
The Perceptron

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

The instructor gratefully acknowledges Andrew Ng (Stanford), Eric Eaton (UPenn), David Kauchak (Pomona),
and the many others who made their course materials freely available online.

Instructor: Jessica Wu Harvey Mudd College

Perceptron Basics
Learning Goals

Describe the perceptron model
Describe the perceptron algorithm
Describe why the perceptron update works
Describe the perceptron cost function
Describe how a bias term affects the perceptron

The Perceptron
Assume there is a linear classifier
Start with simple learner and analyze with it does

Let y {–1, +1}

where

So if Tx 0, then y = +1

if Tx < 0, then y = –1

y = +1

y = –1

Tx = 0 For now, assume
hyperplane through
origin (no bias term).

Perceptron Algorithm

start with guess for (typically = 0)
repeat until convergence

for i = 1 to n
if y(i) Tx(i) 0

+ y(i)x(i)

Notes
online learning algorithm
guaranteed to find separating hyperplane if data is linearly
separable (theorem later this lecture)

if mistake is made
(why 0 rather than < 0?)

update step

possible criteria:
all training examples
correctly classified
if average update
(|| new – old||2) <
fixed # of iterations
single pass over data

Perceptron Example
0 = [1, 0]T

Repeat until convergence
Process points in order 1,2,3,4
Keep track of as it changes
Redraw the hyperplane after each step

x1

x2

(–1,1) (1,1)

(0.5,–1)(–1,–1)

1

23

4

Based on slide by David Kauchak [originally by Piyush Rai]

(This slide intentionally left blank.)

Why the Perceptron Update Works
Geometric Interpretation

old

+
misclassified

Based on slide by Eric Eaton [originally by Piyush Rai]

Why the Perceptron Update Works
Mathematic Proof
Consider the misclassified example y = +1

Perceptron wrongly thinks old
Tx < 0

Based on slide by Eric Eaton [originally by Piyush Rai]

Why the Perceptron Update Works
similar arguments for misclassified negative example

Consider the misclassified example y = –1
Perceptron wrongly things old

Tx > 0

old –
misclassified

Why the Perceptron Update Works
Consider the misclassified example y = –1

Perceptron wrongly things old
Tx > 0

Cost Function
What if we tried to minimize 0/1 loss?

Idea: Use surrogate loss function

indicator function
0 if prediction is correct

1 otherwise

Challenges
NP hard!
small changes in can
induce large changes in
J(), and change is not
continuous
lots of local minima
not useful gradient: at
any point, no
information to direct us
towards any minima

remember, prediction is
correct if y(i) Tx(i) > 0

If prediction is correct
max(0, –y(i) Tx(i)) = 0.

Otherwise
it is confidence is mis prediction
walk in direction of negative gradient (GD!)
(for single example, – J() = y(i)x(i))

Based on slide by Eric Eaton [originally by Alan Fern]

Bias Term

Bias shifts hyperplane –b units in direction of .

+– +–
+–

b = 0 b > 0 b < 0

Positive bias means more
examples classified as positive.

Shift away from means more
space for positive classification.

Perceptron Convergence
Learning Goals

Does the perceptron converge?
If so, how long does it take?

(How many mistakes / updates?)

State the perceptron convergence theorem
State the implications of the theorem

Margins
For training set and parameter vector :

functional margin of ith example

this is positive if classifies x(i) correctly
absolute value = “confidence” in predicted label (or “mis confidence”)

geometric margin of ith example

signed distance of example to hyperplane
(positive if example classified correctly)

margin of training set = minimum geometric margin

Perceptron Convergence Theorem
Theorem (Block & Novikoff) [b = 0]
Assume

* s.t. || *|| = 1 and i, (i) * > 0
data is linearly separable with margin * by unit norm
hyperplane *

i, ||x(i)|| R
examples are not “too big”

Then
perceptron converges after at most updates.

Convergence Theorem Guarantees
Convergence rate

depends on margin * and “size” of data R
but not on number of training examples n or data dimensionality d

If perceptron is given data that is linearly separable with
margin *, it will converge to a solution that separates data
and converge quickly if * is large

Proof
We assumed that * (a hyperplane consistent with data) exists

the classification problem is “easy” if * is large
optimal case (maximum *): * is themaximum margin separator

But we are not guaranteed to find * using perceptron
algorithm

we will show how to find maximum margin separator * using SVMs

Order of Examples
Does the order in which we traverse examples matter?

The Name “Perceptron”
Learning Goals

Why is it called the “perceptron” learning
algorithm if it learns a line?

Why not “line learning” algorithm?

The Name “Perceptron”
Comes from our nervous system

neuron

Based on slide by David Kauchak

Our Nervous System:
the human brain is a large
collection of interconnected
neurons

a neuron is a brain cell
collects, processes, and
disseminates electrical
signals
connected via synapses
fire depending on
conditions of neighboring
neurons

Based on slide by David Kauchak

A Neuron

is the strength of signal sent from A to B
if A fires and is positive, then A stimulates B
if A fires and is negative, then A inhibits B
if B is stimulated enough, then it also fires
amount of stimulation required is determined
by its threshold

weight
Node A Node B

(neuron) (neuron)

Based on slide by David Kauchak

A Single Neuron / Perceptron

input x1

input x2

input x3

input x4

weight 1

weight 2

weight 3

weight 4

output yg(in)

in = j jxj
linear combination

threshold function

possible thresholds
hard sigmoid

Based on slide by David Kauchak

Neuron Example
1

1

0

1

1

1

1

0.5

?

threshold of 1

1

0

0

1

1

1

1

0.5

?

threshold of 1

What are the weights, and what is b?
What is the output?

Based on slide by David Kauchak

Neural Networks
node (neuron)

edge (synapses)

hidden layer
of neurons

Based on slide by David Kauchak

(extra slides)

Proof of
Perceptron Convergence Theorem

Learning Goals

Prove the Perceptron Convergence Theorem
=D

Proof Overview
* s.t. data is linearly separable with margin *

(we do not know * but we know that it exists)

perceptron algorithm tries to find that points roughly in
same direction as *

for large *, “roughly” is very rough
for small *, “roughly” is very precise

every update, angle between and * changes

recall , we will prove that

uTv increases a lot
||u|| and ||v|| do not increase very much
so angle decreases each update

Proof by Induction

(This slide intentionally left blank.)

