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SVM Basics
Learning Goals

Describe the goal of SVMs
Start from perceptron and build graphical intuition

Setup formal SVM optimization problem



Recall the Perceptron
Assume there is a linear classifier
Start with simple learner and analyze with it does

Let y {–1, +1}

where

So if Tx + b 0, then y = +1

if Tx + b < 0, then y = –1

y = +1

y = –1

Tx +b = 0

use explicit bias term rather
than folding into features x0

Optimal Linear Separator
Which linear separator is optimal?

Based on slide by Eric Eaton [originally by Tim Oates]

a “good” separator



Maximizing the Margin

Based on slide by Eric Eaton [originally by Tim Oates]

margin

Summary
Perceptron finds one of many possible hyperplanes
separating data (if one exists)
Of possible choices, find one withmaximummargin

Support Vector Machines (SVMs)
Why?

Good according to intuition, theory, and practice
Some history

SVM became famous when, in handwriting recognition task
using images as input, it gave accuracy comparable to
neural network with hand designed features



Review: Margins
For training set and parameter vector :

functional margin of ith example

positive if classifies x(i) correctly
absolute value = “confidence” in predicted label (or “mis confidence”)

geometric margin of ith example

signed distance of x(i) to hyperplane (positive if classified correctly)

margin over training set
minimum functional margin

minimum geometric margin

Maximum Margin Classifier
Assume entire training set
is correctly classified
(generalize later)

Tx + b = 0

+1 –1

enforce = 1 (functional margin)

then (geometric margin)



SVM Exercise
Consider the following training data:

Plot these points. Are the classes {+, –} linearly separable?
Plot the maximum margin hyperplane by inspection. What is the associated
weight vector of this hyperplane? Identify the support vectors.
If you remove one of the support vectors, does the size of the optimal
margin decrease, stay the same, or increase?
Extra: Is your answer above true for any data set? Provide a
counterexample or give a short proof.

Example adapted from Russell Norvig

x1 x2 label
1 1 +

2 2 +

2 0 +

0 0 –

1 0 –

0 1 –

(This slide intentionally left blank.)



Generalization
Large margin good generalization

Can we justify this more formally?
reminder: margin = 1/|| ||

large margin

Want more formality?
learning theory

Optimization Problem

Note
convex quadratic objective with linear constraints
(n of them)
Quadratic program (QP)
Polynomial time algorithms exist for solving QPs

maximum margin = max 1/|| ||
min || || (non convex)
min ½ || ||2



SVMs
Learning Goals

Solving the SVM optimization problem
using Lagrange multipliers (leads to dual problem)

Allowing misclassified examples
using slack variables (leads to soft margin SVM)

Describe the SVM loss function
Allowing non linear decision boundaries

using kernels

Primal and Dual SVMs
Primal

MATH! (Lagrange multipliers)
Dual

dot product
x,y = xTy

weights
associated

with features

weights
associated

with examples



Math Details
For math to work,
Karush Kuhn Tucker (KKT) conditions must hold:

for optimal , b, ,

if i > 0, then y(i)( Tx(i) + b) = 1

i.e. if weight for example i > 0,
then x(i) lies on a margin boundary (x(i) is a SV)

if y(i)( Tx(i) + b) > 1, then i = 0
i.e. if x(i) does not lie a margin boundary (x(i) is not a SV)

then weight for example i = 0

complementary slackness

Solving SVM Problem
Solve dual in lieu of primal
Solve for directly
How?

coordinate descent, sequential minimal optimization (SMO)

Compute primal solution from dual
to obtain ,

to obtain b, find a SV x(i), solve

can sum over SVs since only these
examples have i > 0
remember, we have not added x0 = 1



Sparsity and Generalization
i > 0 only for SVs

# SVs <<< # training examples

sparseness leads to better generalization
Why?

What is maximum LOOCV error?

(This slide intentionally left blank.)
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SVMs
Learning Goals

Solving the SVM optimization problem
using Lagrange multipliers (leads to dual problem)

Allowing misclassified examples
using slack variables (leads to soft margin SVM)

Describe the SVM loss function
Allowing non linear decision boundaries

using kernels
Ideas?



What if Data is Not Linearly Separable?
Idea 1: Add more features

x (x)
Problems
What ?
Increasing dimensionality could lead to overfitting

What if Data is Not Linearly Separable?
Idea 2: Allow some training data to be misclassified
(be robust to outliers)

Problems
0/1 loss not QP and NP hard
Does not distinguish near misses from really bad mistakes

number of mistakes

for some subset i
trade off mistakes

single outlier dramatically
affects decision boundary
& results in smaller margin)



Soft Margin SVM
Idea 2 revised: Allow slack

Greek xi (za , sa )

relax constraints using
slack variables inew variable

Soft Margin SVM
examples can have
(functional) margin < 1
if i > 0, pay penalty C i

C is slack penalty [C 0]
trade off between…
minimizing || ||2 (maximizing
margin)
ensuring most examples have
functional margin of at least 1

small C [min ½|| ||2]

large C [min i i]

Tx + b = 0
1/|| ||

i/|| ||

margin boundaries still at Tx + b = 1
training example …

within margin region when 0 < i < 1
misclassified when i > 1



Dual Formulation

intuition
w/o slack

i can increase without bound to prevent misclassification
w/ slack
upper bound of C limits i to allow misclassifications

new constraint: add upper bound i C

Math Details
Different KKT conditions

i = 0 y(i)( Tx(i) + b) > 1

i = C y(i)( Tx(i) + b) < 1
0 < i < C y(i)( Tx(i) + b) = 1

Types of support vectors
hard margin SVM has only one type of SV

points on margin boundaries
soft margin SVM has three types of SVs

points on margin boundaries
i = 0, 0 < i < C

points within margin region but still on correct side
0 < i < 1

points on wrong side of hyperplane (misclassified)
i 1

margin violators
i = C



SVMs
Learning Goals

Solving the SVM optimization problem
using Lagrange multipliers (leads to dual problem)

Allowing misclassified examples
using slack variables (leads to soft margin SVM)

Describe the SVM loss function
Allowing non linear decision boundaries

using kernels

Deriving the Loss Function
Recall soft margin SVM optimization problem

if y(i)( Tx(i) + b) 1,
then i = 0 (no penalty)

if y(i)( Tx(i) + b) < 1,
then i = 1 – y(i)( Tx(i) + b) (linear penalty)

i = max(0, 1 – y(i)( Tx(i) + b))

hinge loss (encoded in slack variables)



Loss Functions
= raw prediction
0/1
squared
logistic
hinge
exponential
(variant of hinge loss)

Heaviside step function

Soft Margin SVM as Regularization
Let

So

Standard form of regularization

note:
is “raw” output,

not predicted class

empirical risk
using hinge loss

regularization

So
low regularization
small , large C

high regularization
large , small C


