

Advanced Evaluation, Imbalanced Data

Instructor: Jessica Wu -- Harvey Mudd College

The instructor gratefully acknowledges Eric Eaton (UPenn), David Kauchak (Pomona), Tommi Jaakola (MIT) and the many others who made their course materials freely available online.

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

Advanced Evaluation Metrics

Learning Goals

- Describe metrics for evaluating performance
 - -AUROC, precision, recall, F₁-score

					predic ves	ted class no	TPR = TP / (TP + FN)
instance	confidence in positive	correct class	actual class	yes no	TP FP	FN TN	FPR = FP / (TN + FP)
9	0.99	+					
7	0.98	+					t
1	0.72	-				1.0 -	┢
2	0.70	+				•	ł
6	0.65	+					ł
10	0.51	-				TPR	ł
3	0.39	-				•	ł
5	0.24	+					+ + + + + + + + + + + + + + + + + + +
4	0.11	-					FPR 1.0
8	0.01	-					

But wait...

Does low FPR (high specificity) indicate that most positive predictions (predictions with confidence > some threshold) are correct?

suppose TPR = 0.9, FPR = 0.01

fraction of instances that are positive	fraction of positive predictions that are correct
0.5	0.989
0.1	0.909
0.01	0.476
0.001	0.083

		predic	cted class
		yes	no
actual class	yes	ΤР	FN
actual class	no	FP	TN
TPR = TP / (TP FPR = FP / (TN PR (positive ra NR (negative r	, I + FP) ate) = (
fraction of po that are			ons

= TP / (TP + FP) = TPR * PR / (TPR * PR + FPR * NR)

Based on slide by David Page

Metrics Exercise

		predict	ed class
		yes	no
actual class	yes	100	5
	no	10	50

sensitivity? specificity? precision? recall? F₁-score?

Comments on ROC and PR curves

Both

- allow predictive performance to be assessed at various levels of confidence
- assume binary classification tasks
- sometimes summarized by calculating area under the curve (AUROC, AUPR)

ROC curves

- insensitive to changes in class distribution (ROC curve does not change if proportion of positive and negative instances in test set are varied)
- can identify optimal classification thresholds for tasks with differential misclassification costs

PR curves

- show fraction of predictions that are false positives
- well-suited for tasks with lots of negative instances

AW	ord	of Ca	aution	
Consider binary clas	sifiers	ч, в, с		
Predictions 1 0.9 0 0	$ \begin{array}{c cc} $	8 0 8 0 1 0.1	$\begin{array}{ccc} C & . \\ 1 & 0 \\ \hline 0.78 & 0 \\ 0.12 & 0.1 \end{array}$	
Clearly A is useless sin	nce it alv	vays pre	edicts 1	
 B is slightly better that – less probability mass wast 		gonals		
• But, here are the per	formance	e metri	CS	
Metric	A	в	\mathbf{C}	
Accuracy	0.9	0.9	0.88	
Precision	0.9	1.0	1.0	
Recall	1.0	0.888	0.8667	
F-score	0.947	0.941	0.9286	
Based on slide by Kevin Murphy				

Imbalanced Data

Learning Goals

• Describe approaches for handling imbalanced data and the trade-offs of each

Setup

- 1. for 1 hour, Google collects 1M e-mails randomly
- 2. they pay people to label them as "phishing" or "notphishing"
- 3. they give the data to you to learn to classify e-mails as phishing or not
- 4. you, having taken ML, try out a few of your favorite classifiers
- 5. you achieve an accuracy of 99.997%

Should you be happy?

Based on slide by David Kauchak

Imbalanced Problem Domains

Besides phishing (and spam), what are some other imbalanced problems domains?

- Medical diagnosis
- Predicting faults/failures (e.g. hard-drive failures, mechanical failures, etc.)
- Predicting rare events (e.g. earthquakes)
- Detecting fraud (credit card transactions, internet traffic)

Based on slide by David Kauchak

Idea 3: Optimize Different Metric

Train classifiers that try and optimize F_1 or AUC or ... come up with another learning algorithm designed specifically for imbalanced problems

pros/cons?

- Not all classifiers amenable to optimizing F₁ or AUC
- Do not want to reinvent the wheel that said, there are a number of approaches specifically developed to handle imbalanced problems