
Advice on
Applying ML

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

The instructor gratefully acknowledges Andrew Ng (Stanford), from whom these slides are adapted.

Instructor: Jessica Wu Harvey Mudd College
xkcd, Machine Learning

Choosing the Right Estimator

http://scikit learn.org/stable/tutorial/machine_learning_map/

Today’s Lecture
Advice on applying learning algorithms to different applications

Most of today’s lecture is not very mathematical…
but it is also some of the hardest material in this class to understand

Some of what I will say today…
is debatable
is not good advice for doing novel ML research

Key ideas
1.Diagnostics for debugging learning algorithms
2. Error analyses and ablative analysis
3.How to get started on a ML problem

Premature (statistical) optimization

Motivating Example:
Building a Spam Classifier

From: cheapsales@buystufffromme.com
To: ang@cs.stanford.edu
Subject: Buy now!

Deal of the week! Buy now!
Rolex w4tchs - $100
Med1cine (any kind) - $50
Also low cost M0rgages
available.

From: Alfred Ng
To: ang@cs.stanford.edu
Subject: Christmas dates?

Hey Andrew,
Was talking to Mom about plans
for Xmas. When do you get off
work. Meet Dec 22?
Alf

spam (1) non spam (0)

Debugging Learning Algorithms
Supervised learning
x = features of email

carefully choose 100 words indicative of spam/not spam
in practice, take most frequently occurring d words (10k 50k) in
training set rather than manually pick 100 words

y = spam (1) or not spam (0)

Learning algorithm
Bayesian logistic regression, implemented with gradient
descent

20% test error, which is unacceptably high

What should you do next?

Fixing Learning Algorithms
Common approach: try improving algorithm in
different ways…

Diagnosing Learning Algorithms
Better approach

Run diagnostic to figure out problem
Fix problem

Diagnostic
Defn: test that you can run to gain insight what is/is not
working with learning algorithm, and gain guidance as to
how best to improve its performance
Diagnostics can take time to implement, but doing so can
be a very good use of your time

Bayesian logistic regression’s test error is 20%
(unacceptably high)
Is it a bias problem or a variance problem?

Review: Bias vs Variance

Pr
ice

Size

Pr
ice

Size

Pr
ice

Size

underfitting
(high bias)

overfitting
(high variance)

correct fit
0 + 1x 0 + 1x + 2x 2

0 + 1x + 2x 2 + 3x 3 + 4x 4

structural error
hypothesis space cannot
model true relationship

more data does not help
need larger

estimation (approximation) error
hypothesis space can model true
relationship BUT hard to identify correct
model due to large | |, small n, or noise

reduce
add more data

balance

Based on slide by Eric Eaton [example by Andrew Ng]

Bias vs Variance: Model Complexity

er
ro
r

model complexity

Bias vs Variance: Regularization

er
ro
r

Learning Curves
Typical learning curve for high bias

er
ro
r

desired performance

n (training set size)

Learning Curves
Typical learning curve for high variance

er
ro
r

desired performance

n (training set size)

Diagnostics Tell You What to Try Next

Try getting more training examples
Try smaller set of features
Try larger set of features
Try changing features (email header
vs email body features)
Try decreasing
Try increasing

Fixes high bias or high variance?

Spam classification through Bayesian logistic regression,
implemented with gradient descent

More on Diagnostics
Quite often, you will need to come up with your own
diagnostics to figure out what is happening in an
algorithm

Even if learning algorithm is worked well, you might
also run diagnostics to make sure you understand
what is going on. This is useful for

Understanding your application problem
If you are working on one important ML application for
months/years, it is very valuable for you personally to get an
intuitive understanding of what works and what does not work in
your problem.

Writing research papers
Diagnostics and error analysis help convey insight about the
problem, and justify your research claims.

i.e. Rather than saying “Here is an algorithm that works”, it is more interesting
to say “Here is an algorithm that works because of component X, and here is
my justification.”

Error Analysis
Try to understand your sources of error good machine
learning practice!

Simple approach
Manually examine the examples (in cross validation set) that your
algorithm made errors on
See if you spot any systematic trend in what type of examples it is
making errors on

Example
500 example in CV set
Algorithm misclassifies 100 emails
Manually examine 100 errors, and categorize them based on

what type of email it is
pharma [12], replica/fake [4], steal passwords [53], other [31]

what cues (features) you think would have helped the algorithm classify
them correctly

misspellings [5], unusual punctuation [32], unusual email routing [16], …

Error Analysis
Many applications combine different learning components into a “pipeline”
e.g. face recognition from images [contrived example]

Error Analysis

How much error is attributable to
each of the components?
Plug in ground truth for (output of)
each component and see how error
changes
Conclusion:

component accuracy
overall system 85.0%

preprocess (remove bkgd) 85.1%
face detection 91.0%

eyes segmentation 95.0%
nose segmentation 96.0%
mouth segmentation 97.0%
logistic regression 100%

Ablative Analysis
Error analysis tries to explain difference between current
performance and perfect performance
Ablative analysis tries to explain difference between current
performance and some baseline (much poorer) performance

Example: Suppose you have built a good anti spam classifier by
adding lots of clever features to logistic regression

spelling correction
sender host features
email header features
email text parser features
Javascript parser
features from embedded images

How much did each of these components really help?

Ablative Analysis
Simple logistic regression without any clever features gets 94%
performance

Just what accounts for improvement from 94% to 99.9%?

Ablative analysis: remove components from your system one at a time to
see how it breaks (remove component X, obtain accuracy Y)

Conclusion:

component accuracy
overall system 99.9%

spelling correction 99.0%
sender host features 98.9%
email header features 98.9%

email text parser features 95.0%
Javascript parser 94.5%

features from images 94.0% [baseline]

Getting Started on a Learning Problem
Approach #1: Careful Design
Spend a long time designing
exactly the right features,
collecting the right dataset, and
designing the right algorithmic
architecture
Implement it, hope it works

Benefits
Nicer, perhaps more scalable
algorithms
May come up with new, elegant
learning algorithms and contribute
to basic research in machine
learning

Approach #2: Build and Fix
Implement something quick and
dirty
Run error analyses and diagnostics
to see what is wrong with it, and
fix errors

Benefits
Will often get your application
problem working more quickly, so
faster time to market

Premature Statistical Optimization
Very often, it is not clear what parts of system are easy or difficult to build,
and which parts you need to spend lots of time focusing on, e.g.
The only way to find out what needs work is to implement something
quickly and find out what parts break

But this may be bad advice if your goal is to come up with new ML algorithms

Data for Machine Learning
Task: Classify between
confusable words.

{to, two, too}
{then, than}

For breakfast I ate _____ eggs.

“It’s not who has the best algorithm that wins.
It’s who has the most data.”
Banko and Brill 2001

Training set size (millions)

Ac
cu
ra
cy

Large Data Rationale
Assume feature x has sufficient information to predict y
accurately

Example: For breakfast I ate {to, two, too} eggs
Counterexample: Predict housing price from only size (feet2) and no
other features

Useful test: Given input x, can human expert confidently
predict y?

Why large data?
Use learning algorithm with many parameters (e.g. logistic
regression/linear regression with many features)

low bias algorithms, so Jtrain() will be small
Use very large training set (unlikely to overfit)

low variance, so Jtrain() Jtest()

combined with above, Jtest() will be small

Summary
Time spent coming up with diagnostics for learning
algorithms is time well spent

It is often up to your own ingenuity to come up with right
diagnostics

Error analyses and ablative analyses also give insight
into problem

Two approaches to applying learning algorithms
Design very carefully, then implement

Risk of premature (statistical) optimization
Build a quick and dirty prototype, diagnose, and fix

