

Today's Lecture

- Advice on applying learning algorithms to different applications
- Most of today's lecture is not very mathematical...
 - but it is also some of the hardest material in this class to understand
- Some of what I will say today...
 - is debatable
 - is not good advice for doing novel ML research
- Key ideas
 - 1. Diagnostics for debugging learning algorithms
 - 2. Error analyses and ablative analysis
 - 3. How to get started on a ML problem
 - Premature (statistical) optimization

Motivating Example: Building a Spam Classifier

From: cheapsales@buystufffromme.com
To: ang@cs.stanford.edu
Subject: Buy now!

Deal of the week! Buy now! Rolex w4tchs - \$100 Medlcine (any kind) - \$50 Also low cost M0rgages available.

spam (1)

From: Alfred Ng To: ang@cs.stanford.edu Subject: Christmas dates?

Hey Andrew, Was talking to Mom about plans for Xmas. When do you get off work. Meet Dec 22? Alf

non-spam (0)

Fixing Learning Algorithms

• Common approach: try improving algorithm in different ways...

Diagnostics Tell You What to Try Next

Spam classification through Bayesian logistic regression, implemented with gradient descent

- Try getting more training examples
- Try smaller set of features
- Try larger set of features
- Try changing features (email header vs email body features)
- Try decreasing λ
- Try increasing λ

- Fixes high bias or high variance?
- •
- -
- •
- -
- •

More on Diagnostics

- Quite often, you will need to come up with your own diagnostics to figure out what is happening in an algorithm
- Even if learning algorithm is worked well, you might also run diagnostics to make sure you understand what is going on. This is useful for

- Understanding your application problem

 If you are working on one important ML application for months/years, it is very valuable for you personally to get an intuitive understanding of what works and what does not work in your problem.

- Writing research papers

- Diagnostics and error analysis help convey insight about the problem, and justify your research claims.
 - i.e. Rather than saying "Here is an algorithm that works", it is more interesting to say "Here is an algorithm that works because of component X, and here is my justification."

Error Analysis

- Try to understand your sources of error -- good machine learning practice!
- Simple approach
 - Manually examine the examples (in cross validation set) that your algorithm made errors on
 - See if you spot any systematic trend in what type of examples it is making errors on
- Example
 - 500 example in CV set
 - Algorithm misclassifies 100 emails
 - Manually examine 100 errors, and categorize them based on
 - what type of email it is
 - pharma [12], replica/fake [4], steal passwords [53], other [31]
 - what cues (features) you think would have helped the algorithm classify them correctly
 - misspellings [5], unusual punctuation [32], unusual email routing [16], ...

Ablative Analysis

- Error analysis tries to explain difference between current performance and perfect performance
- Ablative analysis tries to explain difference between current performance and some baseline (much poorer) performance
- Example: Suppose you have built a good anti-spam classifier by adding lots of clever features to logistic regression
 - spelling correction
 - sender host features
 - email header features
 - email text parser features
 - Javascript parser
 - features from embedded images
- How much did each of these components really help?

Getting Started on a Learning Problem

Approach #1: Careful Design

- Spend a long time designing exactly the right features, collecting the right dataset, and designing the right algorithmic architecture
- Implement it, hope it works

Benefits

- Nicer, perhaps more scalable algorithms
- May come up with new, elegant learning algorithms and contribute to basic research in machine learning

Approach #2: Build-and-Fix

- Implement something quick-anddirty
- Run error analyses and diagnostics to see what is wrong with it, and fix errors

Benefits

 Will often get your application problem working more quickly, so faster time-to-market

Data for Machine Learning

"It's not who has the best algorithm that wins. It's who has the most data." -- Banko and Brill 2001

- Two approaches to applying learning algorithms
 - Design very carefully, then implement
 - Risk of premature (statistical) optimization
 - Build a quick-and-dirty prototype, diagnose, and fix