
Ensemble Methods:
Boosting

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

The instructor gratefully acknowledges Eric Eaton (UPenn), Jenna Wiens (UMich), Tommi Jaakola (MIT),
David Kauchak (Pomona), David Sontag (NYU), Piyush Rai (Utah), and the many others who made their
course materials freely available online.

Instructor: Jessica Wu Harvey Mudd College

Boosting
Learning Goals

Describe boosting
How does boosting improve performance?

Describe the AdaBoost algorithm
Describe the loss function for AdaBoost

More Tutorials
Robert Schapire (one of the original authors of AdaBoost): http://rob.schapire.net/papers/explaining adaboost.pdf
Gentler overview: http://mccormickml.com/2013/12/13/adaboost tutorial/



Ensemble Learning
Bagging reduces variance by averaging. Bias did not change.
Can we reduce bias and variance?

Boosting: Combine simple “weak” base learners into a more
complex “strong” ensemble.

Insight
Easy to find “rules of thumb” that are “often” correct
Hard to find single highly accurate prediction rule

Approach
Devise program for deriving rough rules of thumb
Apply procedure to subset of examples, obtain rule of thumb
Repeat previous step

Yes, boosting!

Based on notes by Jenna Wiens and slides by Rob Schapire

Technical Details
Assume we are given a “weak” learning algorithm that
can consistently find classifiers (“rules of thumb”) at
least slightly better than random (accuracy > 50% in
two class setting).

Then given sufficient training data, a boosting
algorithm can provably construct single classifier with
very high accuracy.

Based on slide by Rob Schapire



Strong and Weak Learnability
Boosting’s roots are in “PAC” (probably approximately correct) learning model

“strong” learner
Given polynomially many training examples (and polynomial time)

target error rate
failure probability p

Produce classifier with arbitrarily small generalization error (error rate < )
with high probability (1 – p)

“weak” learner
Given polynomially many training examples (and polynomial time)

failure probability p
Produce classifier that is slightly better than random guessing (error rate < 0.5)

with high probability (1 – p)

Weak learners are much easier to create!
Combine weak learners into strong learner!

Based on slide by Rob Schapire

Key Details
How do we choose examples each round?
Concentrate on “hardest examples”
(those most often misclassified by previous rules)

How do we combine rules of thumb into single
prediction rule?
Take (weighted) majority vote of rules of thumb

How do we choose weak classifiers?
Use decision stumps
where

Based on slide by Rob Schapire

encodes location
encodes direction of stump

(positive, negative)

encodes coordinate k
that stump depends on



Boosting Overview
Training
Start with equal example weights
For some number of iterations

Learn weak classifiers and save
Change example weights

Prediction
Get prediction from all weak classifiers
Make weighted vote based on how well weak
classifier did when it was trained

Based on slide by David Kauchak

Adaboost (adaptive boosting) Algorithm
Set for i = 1, …, n

For stage t = 1, …, m, do
Fit classifier to weighted training set (weights )
Compute weighted classification error

Compute “score” (ln = natural log; new component is assigned vote based on error)

Update weights on all training examples

(where ct is normalization constant to ensure weights sum to 1)

Return



Understanding Adaboost
Set for i = 1, …, n

For stage t = 1, …, m, do
Fit classifier to weighted training set (weights )
Compute weighted classification error

Compute “score” (ln = natural log; new component is assigned vote based on error)

Update weights on all training examples

(where ct is normalization constant to ensure weights sum to 1)

Return

is a vector of weights over the examples
at stage t. All points start with equal weight.

Understanding Adaboost
Set for i = 1, …, n

For stage t = 1, …, m, do
Fit classifier to weighted training set (weights )
Compute weighted classification error

Compute “score” (ln = natural log; new component is assigned vote based on error)

Update weights on all training examples

(where ct is normalization constant to ensure weights sum to 1)

Return

We need a classifier that can be trained
with weighted examples.

The training algorithm must be fast (since
a new classifier is trained at every stage).



Understanding Adaboost
Set for i = 1, …, n

For stage t = 1, …, m, do
Fit classifier to weighted training set (weights )
Compute weighted classification error

Compute “score” (ln = natural log; new component is assigned vote based on error)

Update weights on all training examples

(where ct is normalization constant to ensure weights sum to 1)

Return

Error is a weighted sum of all misclassified examples.
Error is between 0 (all examples correctly classified)
and 1 (all examples incorrectly classified).

misclassified example

Understanding Adaboost
Set for i = 1, …, n

For stage t = 1, …, m, do
Fit classifier to weighted training set (weights )
Compute weighted classification error

Compute “score” (ln = natural log; new component is assigned vote based on error)

Update weights on all training examples

(where ct is normalization constant to ensure weights sum to 1)

Return

measures the importance of .
What does it look like (as a function of )?

If error = 0.5 (no better
than random guessing),

then score = 0.

If error < 0.5, then score > 0.
Better classifiers (lower error) are
given more weight (higher score).

If error > 0.5, then score < 0.
Flip ’s predictions. Better

“flipped” classifiers (higher error) are
given more weight (higher abs score).



Understanding Adaboost
Set for i = 1, …, n

For stage t = 1, …, m, do
Fit classifier to weighted training set (weights )
Compute weighted classification error

Compute “score” (ln = natural log; new component is assigned vote based on error)

Update weights on all training examples

(where ct is normalization constant to ensure weights sum to 1)

Return

This is equivalent to if > 0:
downweight correctly
classified examples

upweight incorrectly
classified examples

if < 0:
upweight correctly
classified examples

downweight incorrectly
classified examples

Understanding Adaboost
Set for i = 1, …, n

For stage t = 1, …, m, do
Fit classifier to weighted training set (weights )
Compute weighted classification error

Compute “score” (ln = natural log; new component is assigned vote based on error)

Update weights on all training examples

(where ct is normalization constant to ensure weights sum to 1)

Return

Predict using weighted vote of component
classifiers. Remember, better classifiers (or
flipped classifiers) are given more weight.



Dynamic Behavior of Adaboost
If example is repeatedly misclassified
Each time, increase its weight
Eventually, it will be emphasized enough to generate
ensemble hypothesis that correctly predicts it

Successive member hypotheses focus on hardest parts
of instance space

Based on slide by Eric Eaton

(This slide intentionally left blank.)



Adaboost Example
Consider binary classification with 10 training examples
Determine a boosted combination of decision stumps that correctly classifies all points

Round 0 (initial)

weight distribution is uniform

(This slide intentionally left blank.)



Adaboost Math
Adaboost minimize exponential loss.

(Proof? Office Hours)

Other boosting variants
squared loss L2 boosting
absolute error / loss gradient boosting
log loss logit boosting

Adaboost in Practice
Pros
Fast and simple to program
No parameters to tune (exceptm)
No assumptions on weak learner
Versatile (has been extended to multiclass learning problems)
Provably effective, provided can consistently find rough rules of thumb
Shift in mind set
goal now is merely to find classifier barely better than random guessing

Cons
Performance depends on weak learner
Can fail if

Weak classifiers too complex overfitting
Weak classifiers too weak: insufficient data underfitting; low margins overfitting

Empirically susceptible to uniform noise

Based on slide by Eric Eaton



Adaboost Application Example
Face detection

Based on slide by David Kauchak

To give you some context of importance…

“Weak” Learners
Detect light / dark rectangles in image

Based on slide by David Kauchak

h(x) = 1h1(x)+ 2h2(x) + ...
hi(x) = 1 if gi(x) > i (threshold)

–1 otherwise
g(x) = sum(white_area) – sum(black_area)



Bagging vs Boosting
Bagging

Generate random sets from training data
Combine outputs of multiple classifiers to produce single
output
Decrease variance, bias unaffected

Boosting
Combine simple “weak” base classifiers into more complex
“strong” ensemble
Decrease bias and variance

(This slide intentionally left blank.)



Adaboost Example
Consider binary classification with 10 training examples
Determine a boosted combination of decision stumps
that correctly classifies all points

Round 0 (initial)

weight distribution is uniform

Adaboost Example
Round 1

0.42

each circled point misclassified so upweighted [3 pts]

each non circled point correctly classified point so downweighted [7 pts]

weights then renormalized to 1



Adaboost Example
Round 2

0.42 0.65

circled – : misclassified so upweighted [3 pts]

large + : correctly classified so downweighted [3 pts]

small + / – : correctly classified so downweighted [4 pts]

Adaboost Example
Round 3

decide to stop after round 3

Final

ensemble consists of 3 classifiers h1, h2, h3
final classifier is weighted linear combination of all classifiers
multiple weak, linear classifiers combined to give strong, nonlinear classifier

0.42 0.65
0.92


