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Feature Selection
Learning Goals

Describe the goal of feature selection
Describe “simple” feature selection methods
using greedy algorithms and L1 regularization

Based on slides by David Sontag [originally by Carlos Guestrin and Luke Zettlemoyer]



Setup
Problem
new input data may have thousands or millions of
dimensions

Dimensionality Reduction
represent data with fewer dimensions

Why?

Feature Selection
Setup
Want to learn f : X Y
But some features are more important than others

Problem
Given d features, there are __ possible feature subsets
Too expensive to explicitly compare all models

Approach
Use a heuristic search procedure find a good feature
subset
Select subset of features to be used by learning algorithm

score each feature (or sets of features)
select set of features with best score



Greedy Forward Feature Selection Algorithm

Pick dictionary of features
e.g. polynomials for linear regression

Start from empty (or simple) set of features 0 = 

For t = 1 to desired feature set size
Run learning algorithm for current set of features t to
obtain ht

Select next best feature Xi, e.g. Xi that results in lowest
test error when learning with t {Xi}

Set t+1 t + {Xi}

Select and output the best feature subset that was
evaluated during the entire search procedure

Greedy Backward Feature Selection Algorithm

Pick dictionary of features
Start with all features 0 = 

For t = 1 to desired feature set size
Run learning algorithm for current set of features t to
obtain ht

Select next worst feature Xi, e.g. Xi that results in lowest
test error when learning with i \ {Xi}

Set t+1 t \ {Xi}

Select and output the best feature subset that was
evaluated during the entire search procedure



Feature Selection through Regularization
Jn, ( ) = Rn( ) + z( )

What if we believe only a few features are relevant?
L1 regularization z( ) = || [1:d]||1
Big area of ML called “sparse recovery”
Recall

empirical loss regularization
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minimize # of features
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convex compromise
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choose small weights for features

Principal Component Analysis
Learning Goals

Describe the goal of PCA
Describe the relationship between PCA and
eigenvectors
Describe how to choose the number of PCs
Describe uses (and misuses) of PCA

Based on notes and slides by Andrew Ng



Dimensionality Reduction
Assumption: data (approximately) lies on lower
dimensional subspace

Example: survey of pilots for RC helicopters
x1

(i) = skill of pilot i
x2

(i) = enjoyment of pilot i

Might expect that only the most
committed students, the ones that
truly enjoy flying, become good pilots

x1
(i) and x2

(i) are strongly correlated
Data actually lies along some diagonal
axis u1 that computes pilot “aptitude”,
with small amount of noise lying off axis

PCA: identify this subspace using eigenvectors

Based on notes by Andrew Ng
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Lower Dimensional Projections
Rather than picking subset of features, obtain new ones
by combining existing features X1, …, Xd

New features are linear combinations of old features
Reduces dimension when k < d

We will consider how to do this in an unsupervised
setting (just X, no Y)



Which Projection is Better?

Goal: automatically select direction u to

u u

Based on notes by Andrew Ng

Review: Vector Projections
Basic definitions
xTy = ||x||||y|| cos 

cos = adj / hyp

Then
adj = hyp cos 

= ||x|| cos 
= xTy [assuming ||y|| = 1 (unit vector)]

Dot product is the length of the projection!

x

y



Formal Problem
For unit vector u and point x, the length of the projection of x onto u is xTu
For point x(i), its projection onto u is distance (x(i))Tu from the origin

To maximize the variance of the projections, choose unit length u so as to maximize

We will show that maximizing uT u subject to ||u||2 = 1
gives the principal eigenvector of . That is, the first PC u

corresponds to the eigenvector of with the largest eigenvalue.
Based on notes by Andrew Ng

Covariance Matrix
Recall for single r.v. X,

2 = var(X) = [(X – )2] = [(X – )(X – )]

Let X = [X1, …, Xd]T for r.v.’s X1, …, Xd.
(Note: X is a vector of r.v.’s, not a matrix.)

Then ij = cov(Xi, Xj) = [(Xi – i)(Xj – j)]

where i = [Xi]. Equivalently,

Based on notes by Andrew Ng



Review: Eigenvalues and Eigenvectors
LetA be an n n square matrix. Let be an eigenvalue ofA.
Then v 0 such that

Av = v.
The vector v is an eigenvector ofA associated with eigenvalue .

Notes
The eigenvalues ofA are defined as the roots of

determinant(A – I) = |A – I| = 0.
The vector v points in a direction that is invariant under the
associated linear transformationA.
There is no unique solution for v. It is a direction vector only
and can be scaled by any magnitude. Ordinarily, we normalize v
so that it has length one, that is, vTv = 1.

Proof



Summary
If we wish to find a 1D subspace with which to
approximate the data (such that the variance of the
projected data is maximized),
Choose the principal component u as the eigenvector
of corresponding to the largest eigenvalue of

More generally, if we wish to project our data onto a k
dimensional subspace (k < d),
Choose u1, …, uk as the eigenvectors of
corresponding to the top k eigenvalues of
Since is symmetric, the uj’s can be chosen to be
orthogonal to each other so that the uj’s form a new,
orthonormal basis for the data

Summary
To represent x(i) in this new basis, we need only compute the
corresponding vector

Since PCA maps x(i) d to z(i) k, where z(i) is a lower, k
dimensional approximation of x(i), PCA is a dimensionality
reduction algorithm.

Minimal Approximation Error
PCA can also be derived by finding the basis that minimizes the
approximation error arising from projecting the data onto the k
dimensional subspace spanned by them.



PCA Algorithm
Pre process the data
1) Let .

Recenter the data by replacing x(i) with x(i) – .
2) Let .

Normalize the data by replacing xj
(i) with xj

(i)/ j.

Run PCA
1) Compute covariance matrix
2) Find eigenvalues and eigenvectors of .
3) Retain k eigenvectors with largest eigenvalues.

zeros out mean of data
[may be omitted if data known to have zero mean]

rescales each coordinate to have unit variance,
ensuring all features are treated on the same “scale”

[may be omitted if different attributes known to be on same scale,
e.g. grayscale image with each feature xj [0, 255] as pixel intensity

(This slide intentionally left blank.)



PCA Exercise
The covariance matrix corresponding to the standardized variables x1 and x2 is

Find its principal components (along with the associated weights).

(This slide intentionally left blank.)



Extensions: Matrix Vector Notation
Let be an n n covariance matrix with eigenvectors
u1, …, un and eigenvalues 1, …, n, that is,

uj = juj for j = 1, …, n

Equivalently,

U =           U                     

We normalized the eigenvectors to unit magnitude and they are
orthogonal, so

UUT = UTU = I
UUT = = U UT

Extensions: Scaling Up
Covariance matrix can be really big (d d)

Problems
Finding eigenvectors is slow
Computing could have numerical precision issues

Use singular value decomposition (SVD)

Retain k column vectors ofV with largest singular values

For n d matrixX, there exists
a factorization of the form

X: n d data matrix,
one row per data point

W: n n singular vector matrix
S: n d singular value matrix
V: d d singular vector matrix

Then

square roots of elements of S are eigenvalues of
columns ofV are eigenvectors of

= U UT
(from previous slide)



Choosing the Number of Principal Components
To choose k, note that

average squared projected error =

total variation in the data =

Typically choose k to be the smallest value s.t. the error is upper bounded.
e.g. To bound the error at 1%, choose k s.t.

This is equivalent to retaining 99% of the variance.

Algorithm
1) Try PCA with k = 1
2) Compute projected data
3) Check if ratio below threshold
4) Repeat

Based on slides by Andrew Ng

PCA Applications
Compression
Speed up learning algorithm

Training set: , where x(i) d

Map inputs:

New training set: , where z(i) k (k < d)

Note
mapping x(i) z(i) should be defined by running PCA only on training set
this mapping can then be applied to examples xCV

(i) and xtest
(i) in cross validation

and test sets

Reduce memory / disk needed to store data

Based on slides by Andrew Ng



PCA Applications
Visualization
Example: MNIST, 28 x 28 dimensional images

PCA Applications
Noise reduction
High dimensional data is assumed to lie on linear subspace
Noise introduces small variability captured in PCs of lesser
significance

original image denoised image

Details
Divide the original 372 492 image into 12 12 patches
View each patch as 144d vector
Reduce to 15d vector using PCA



PCA Misuse
Q: What about this design for an ML system?
Get training data, run PCA, train classifier, test on test set

Q: What about using PCA to avoid overfitting?

Take Aways
Dimensionality reduction

What it is and why it is useful

Simple feature selection
Greedy approach
L1 regularization as type of feature selection

Principal Component Analysis (PCA)
One of the most commonly used and most powerful
unsupervised learning algorithms
Maximize variance / minimize reconstruction error
Relationship to covariance matrix and eigenvectors
Choosing the number of PCs
Uses and misuses


