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Clustering
Learning Goals

Describe goal of clustering
Describe common applications of clustering



Clustering
Unsupervised learning technique that detects patterns
Informally: find natural groups among objects
Formally: organize data into clusters such that there is

High intra cluster similarity
Low inter cluster similarity

Most frequently, when people think of unsupervised
learning, they think of clustering
Useful if you do not know what you are looking for
But can produce gibberish

Based on slides by Eric Eaton and David Sontag

Gene Expression Data
Goal: Identify groups
of genes with similar
expression profiles

cholesterol
biosynthesis

cell cycle

immediate–
early response

signaling and
angiogenesis

wound healing
and tissue
remodeling



Face Clustering
Goal: Identify similar faces

Image Segmentation
Goal: Break up image into meaningful or perceptually
similar regions



Social Graphs
Goal: Identify groups within Facebook friends.

Clustering
Group together similar points

Issues
How do we represent an example?
How do we compute similarity between two examples?
How to cluster?
How many clusters?

Based on slides by David Kauchak and David Sontag

Domain knowledge –
we will assume these
are given / known



Clustering Algorithms
Flat / Partitional
Construct various partitions then
evaluate by some criterion
Examples

k means
mixture of Gaussians
spectral

Hierarchical
Create hierarchical
decomposition
Examples

agglomerative (bottom up)
divisive (top down)

Based on slides by David Kauchak and David Sontag

(This slide intentionally left blank.)



K Means Clustering
Learning Goals

Describe k means algorithm
Describe k means objective
Describe k means limitations and extensions

k Means Algorithm
Given training set , x(i) d, and number of clusters k

Goal: Group data into cohesive “clusters”

(1) Initialize cluster centers
(2) Repeat until convergence {

Assign each example to closest center
Update cluster centers

}

What details do we have to specify?



k Means Algorithm
(1) Initialize k cluster centroids randomly

1, …, k
d

(2) Repeat until convergence {
for i = 1, …, n

set

for j = 1, …, k

set

}

Interactive Demo
https://www.naftaliharris.com/blog/visualizing k means clustering/

Based on notes by Andrew Ng

assign each
training example
x(i) to closest
cluster centroid j

move each cluster
centroid j to
mean of points
assigned to it

(This slide intentionally left blank.)



Exercise
You are to cluster eight points:

x(1) = [2,10]T x(2) = [2,5]T x(3) = [8,4]T x(4) = [5,8]T

x(5) = [7,  5]T x(6) = [6,4]T x(7) = [1,2]T x(8) = [4,9]T

You assign x(1), x(3), and x(7) as initial centers (k = 3). Run k means
using Manhattan distance ( 1 norm). Compute cluster centers
and assignments for each round until convergence.
(hint: you may not need all the plots)
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Optimization Objective
Is k means guaranteed to converge?

Define distortion function

where c = [c(1), …, c(n)]T and = [ 1, …, k]T.

J measures sum of squared distances between each
training example x(i) and the cluster centroid to which
it has been assigned. In other words, it measures intra
class variance.

yes

Based on notes by Andrew Ng

Optimization Objective
Claim: k means is coordinate descent on J.

Inner loop of k means algorithm repeatedly…
holds fixed and minimizes J(c, ) w.r.t. c, and then
holds c fixed and minimizes J(c, ) w.r.t. .

Thus
J must monotonically decrease, and
the value of J must converge.

Usually, this implies that c and will converge, too. In theory, it is possible for k means to
oscillate between a few different clusterings (a few different values for c and/or that have
exactly the same value of J), but this almost never happens in practice.

Exact optimization of J is NP hard. K means is heuristic that
converges to local optimum.

Based on notes by Andrew Ng



Choosing the Number of Clusters
Elbow method
Try different values of k
Plot objective vs k
Look for “elbow”

Application Specific
If running k means to use clusters for some later purpose
Evaluate k means based on metric for how well it performs for
that later purpose
E.g. t shirt size, clusters using height and weight as features

3 clusters S, M, L fewer sizes, can make shirts more cheaply
5 clusters XS, S, M, L, XL more sizes, can make better fitting shirts

Based on slides by Andrew Ng

elbow

1 2 3 4

J

k Means Time Complexity
(1) Initialize k cluster centroids randomly

1, …, k
d

(2) Repeat until convergence {
for i = 1, …, n

set

for j = 1, …, k

set

}

What is time complexity?
(k clusters, n training examples, d features, i iterations)



Initialization Issues
Problem
Often randomly pick k < n examples as starting centers
But k means is extremely sensitive to cluster center
initialization

Reasoning
Distortion function J is non convex function
k means can be susceptible to local optima

Bad initialization can lead to
Poor convergence speed
Bad overall clusterings

Based on notes by Andrew Ng

Initialization Issues
In practice
Very often k means works fine and comes up with
very good clusterings despite local minima

Safeguarding approaches
Run k means many times (using different random
initializations), then choose clustering that gives
lowest distortion
k means++: spread out cluster centers

choose first center uniformly at random from examples
choose remaining centers from remaining examples with
probability proportional to squared distance from
example’s closest cluster center

Based on notes by Andrew Ng



Limitations
k means works well only for round shaped,
roughly equal size / density clusters

Based on slides by Piyush Rai [Images by Christof Monz, Queen Mary, Univ of London]

non convex /
non round
shaped clusters

different
density
clusters

Extensions
Problem: clusters have non convex shapes
spectral clustering
(value connectivity
over compactness)

kernelized k means

[Andrew Ng]

x

y r

[David Sontag]



Extensions
Problem: sensitive to outlier examples
k medians

median more robust than mean in presence of
outliers

Problem: cluster centers not an actual example
k medoids

medoid = element of cluster whose average
dissimilarity to all elements in cluster is minimal
(“most centrally located point in cluster”)

Based on slides by Piyush Rai

Extensions
Problem: makes hard assignments of points to clusters

a point completely belongs to cluster or not at all
no notion of soft assignment

fuzzy k means
let weight wij [0,1] measure “degree of belonging”
(degree to which element x(i) belongs to cluster cj)

wij typically inversely related to distance from cluster center
compare standard (hard assignment) k means:

Gaussian Mixture Models (GMMs)
more statistically formalized method
probabilistic assignments to clusters and multivariate Gaussian
distributions
next time…



Hierarchical Clustering
Learning Goals

Describe agglomerative clustering algorithm
Define single link, complete link, and average
link and describe how they affect clustering

Agglomerative (aka bottom up hierarchical) Clustering
Idea
Start with each item in its own cluster
Find best pair to merge into new cluster
Repeat until all clusters are merged

Properties
Produces not one clustering but a family of clusterings
represented by a dendrogram
# of dendograms with n leaves =
Compare to agglomerative algorithm
n loops, on each loop compute n2 distances
time complexity: O(n3)

Based on slides by Eric Eaton

n # dendrograms
2 1
3 3
4 15
5 105
…
10 34,459,425

height represents
distance between
objects / clusters



Distance Matrix
Contains distances between every pair of
objects in training set

d( , ) = 8
d( , ) = 1

Based on slides by Ziv Bar Joseph
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Bottom up (agglomerative)
Starting with each item in its own
cluster
Find best pair to merge into new
cluster
Repeat until all clusters are merged

…
Consider all
possible
merges…

Choose
the best

Consider all
possible
merges… …

Choose
the best

Consider all
possible
merges…

Choose
the best…

Based on slides by Ziv Bar Joseph



Distance between Clusters
Match the linkage type to the behavior and picture (separately)

single linkage
use closest pair

complete linkage
use farthest pair

average linkage
use average of
all pairs

tight (small, round)
clusters

robust against noise

potentially long and
skinny clusters

Based on slides by Ziv Bar Joseph and Piyush Rai [Mouse tumor data, Hastie et al.]

Exercise
Given distance matrix, run
single link (closest pair) clustering.

A B C D E
A 0
B 2 0
C 6 3 0
D 10 9 7 0
E 9 8 5 4 0

A

B

C

D

E



Summary Comparison
Flat
Partitions independent of
one another

Produces single partitioning

Requires k as input

More efficient runtime wise

Hierarchical
Produces different
partitionings depending on
level of granularity (refine or
coarsen clusters by picking
different k)
Partitions nested within one
another
Can pick number of clusters
after clustering
Can be slow (has to make
several merge/split
decisions)

No clear consensus on which produces better clustering

Evaluation
Learning Goals

Describe how to validate clusters produced by
algorithms



Validation
How “good” are our clusters?
external validation

match to known categories (cluster data without
labels, see how well we reproduce labels)
more common

internal validation
no external labels

Based on slides by Ziv Bar Joseph

External Validation
purity = proportion of dominant class in cluster

Based on slides by David Kauchak

Cluster I Cluster II Cluster III

I: purity = (max(3, 1, 0)) / 4 = 3/4
II: purity = (max(1, 4, 1)) / 6 = 4/6
III: purity = (max(2, 0, 3)) / 5 = 3/5

overall purity cluster average weighted average



Internal Validation
stability: if clusters capture real structure, they should be
stable to minor perturbation (e.g. subsampling) of data

Need measure of similarity between two k clusterings
For any set of clusters C, define L(C) as matrix of 0/1 labels

L(C)ij = 1 if examples x(i) and x(j) belong to same cluster
L(C)ij = 0 otherwise

Let S = sim(L(C), L(C')) be similarity between two matrices
e.g. fraction of identical elements in matrices

Let…
C denote clusters from all samples
Ci' denote clusters from ith randomly chosen subset of samples
Sn denote average of n scores between L(C) and L(Ci')

Have high confidence in C if Sn 1 with high probability
(where comparison is done over samples common to both)

Based on slides by Ziv Bar Joseph

Take Aways
Clustering basics

what it is
why it is useful

Clustering algorithms
k means

algorithm
objective (distortion function)
issues (initialization, choosing k, convex clusters)
extensions (k medians, k medoids)

agglomerative
algorithm
single linkage, complete linkage, average linkage

Clustering metrics
external
internal


