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Gaussian Mixture Models Overview
Learning Goals

Describe the differences between k means and
GMMs



K Means: Another View

Based on slides by David Kauchak

Initialize cluster centers
Assign examples to closest center
k means assumes spherical clusters

Update cluster centers

Gaussian Mixture Models
Assume data came frommixture of Gaussians (elliptical data)
Assign data to cluster with certain probability (soft clustering)

Very similar at high level to k means: iterate between assigning
examples and updating cluster centers

k means GMMs
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p(red) = 0.2

p(blue) = 0.9
p(red) = 0.1

Based on slides by David Kauchak



GMM Example

Based on slides by David Kauchak [Images by Chris Bishop, PRML]

initialize cluster centers soft cluster examples
update cluster centers

(based on weighted
contribution of examples)

keep iterating…

Learning GMMs
Learning Goals

Describe the technical details of GMMs



Univariate Gaussian Distribution
(scalar) random variable X
parameters: (scalar) mean , (scalar) variance 2

X ~ N( , 2)

Wikipedia [Normal Distribution]

Multivariate Gaussian Distribution
random variable vectorX = [X1, …, Xn]T

parameters: mean vector n

covariance matrix (symmetric, positive definite)

X ~ N( , )

Wikipedia [Multivariate Normal Distribution]

contour line:
typically drawn
at 1/e of peak height



Covariance Matrix
Recall for pair of r.v.’sX and Y, covariance is defined as

cov(X,Y) = [(X – [X])(Y – [Y])]

ForX = [X1, …, Xn]T, covariance matrix summarizes
covariances across all pairs of variables:

= [(X – [X])(X – [X])T]

is n nmatrix s.t. ij = cov(Xi, Xj)
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GMMs as Generative Model
There are k components
Component j
has associated mean vector j
and covariance matrix j

generates data from N( j, j)

Each example x(i) is
generated according to
following recipe:
pick component j at random
with probability j

sample x(i) ~ N( j, j)
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Based on slides by Andrew Moore
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GMMs as Generative Model
We are given training set {x(1), …, x(n)} (w/o labels)
We model data by specifying joint distribution

p(x(i), z(i)) = p(x(i)) | z(i)) p(z(i))

Here, for k components,
z(i) ~ Multinomial( ) j = p(z(i) = j)

j 0,
x(i) | z(i) = j ~ N( j, j)

Goals: Determine z(i) (soft cluster assignments)
Determine model parameters j, j, j (1 j k)

Note: z(i) are latent r.v.’s (they are hidden/unobserved)
This is what makes estimation problem difficult

Based on notes by Andrew Ng

GMM Optimization
Assume supervised setting (known cluster assignments)

MLE for univariate Gaussian

MLE for multivariate Gaussian

sum over points generated
from this Gaussian

Based on slides by David Sontag



GMM Optimization
What if unobserved data?

Now what?

Based on notes by Andrew Ng

Expectation
Maximization

Based on slides by Andrew Moore



Expectation Maximization
Learning Goals

Describe when EM is useful
Describe the two steps of EM
Practice EM on a toy problem

Expectation Maximization
Clever method for maximizing marginal likelihoods

Excellent approach for unsupervised learning
Can do “trivial” things (upcoming example)
One of most general unsupervised approaches with many
other uses (e.g. HMM inference)

Overview
Begin with guess for model parameters
Repeat until convergence

Update latent variables based on our expectations [E step]
Update model parameters to maximize log likelihood [M step]

Based on notes by Andrew Ng and slides by Andrew Moore



Silly Example
Let events be “grades in a class”

component 1 = gets an A P(A) = ½

component 2 = gets a B P(B) = p
component 3 = gets a C P(C) = 2p

component 4 = gets a D P(D) = ½ – 3p (note 0 p 1/6)

Assume we want to estimate p from data. In a given class, there were
a A’s, b B’s, c C’s, d D’s.

What is the MLE of p given a, b, c, d?
so if class got
a b c d
14 6 9 10

Based on slides by Andrew Moore [Clustering with Gaussian Mixtures]

Same Problem with Hidden Information
Someone tells us that Remember

# of high grades (A’s + B’s) = h P(A) = ½

# of C’s = c P(B) = p
# of D’s = d P(C) = 2p

What is the MLE of p now? P(D) = ½ – 3p

We can answer this question circularly:
If we know value of p,
we could compute expected values of a and b.

If we know expected values of a and b,
we could computemaximum likelihood value of p.

EXPECTATION

MAXIMIZATION

Based on slides by Andrew Moore [Clustering with Gaussian Mixtures]



EM for Our Silly Example
Begin with initial guess for p
Iterate between Expectation and Maximization to improve our
estimates of p and a & b

Define p(t) = estimate of p on tth iteration
b(t) = estimate of b on tth iteration

Repeat until convergence
E step

M step

= [b|p(t)]

= MLE of p given b(t)

Based on slides by Andrew Moore [Clustering with Gaussian Mixtures]

EM Convergence
Good news: converging to local optima is guaranteed
Bad news: local optima

Aside (idea behind convergence proof)
likelihood must increase or remain same between each
iteration [not obvious]
likelihood can never exceed 1 [obvious]
so likelihood must converge [obvious]

In our example, suppose we had
h = 20, c = 10, d = 10
p(0) = 0

Error generally decreases by constant factor each time step
(e.g. convergence is linear)

t p(t) b(t)

0 0 0

1 0.0833 2.857

2 0.0937 3.158

3 0.0947 3.185

4 0.0948 3.187

5 0.0948 3.187

6 0.0948 3.187

Based on slides by Andrew Moore [Clustering with Gaussian Mixtures]



EM Applied to GMMs
Learning Goals

Describe how to optimize GMMs using EM

Learning GMMs
Recall z(i) indicates which of k Gaussians each x(i) comes from
If z(i)’s were known, maximizing likelihood is easy

Maximize wrt , , gives

Based on notes by Andrew Ng

fraction of examples assigned to component j

mean and covariance of examples
assigned to component j



Learning GMMs
Since z(i)’s are not known, use EM!

Repeat until convergence
[E step] Know model parameters, “guess” values of z(i)’s

[M step] Know class probabilities, update model parameters

Based on notes by Andrew Ng

(This slide intentionally left blank.)



Learning GMMs
Since z(i)’s are not known, use EM!

Repeat until convergence
[E step] Know model parameters, “guess” values of z(i)’s

for each i,j, set

[M step] Know class probabilities, update model parameters
update parameters

Based on notes by Andrew Ng

same equations as when z(i)’s
are known except [[z(i) = j]]
replaced with probability wj(i)

wj(i)’s are “soft” guesses for values of z(i)’s

compute posterior
probability using
Bayes’ Rule

evaluate Gaussian
w/ j & j at x(i)

prior probability of
being assigned to
component j = j

compare to k means
wj(i) c(i) = (z(i) = j | x(i); , , )
“hard” assignment to nearest cluster

Final Comments
EM is not magic
Still optimizing non convex function with lots of local
optima
Computations are just easier (often, significantly so!)

Problems
EM susceptible to local optima
reinitialize at several different initial parameters

Extensions
EM looks at maximum log likelihood of data
also possible to look at maximum a posteriori



GMM Exercise
We estimated a mixture of two Gaussians based on
two dimensional data shown below. The mixture was
initialized randomly in two different ways and run for
three iterations based on each initialization. However,
the figures got mixed up. Please draw an arrow from
one figure to another to indicate how they follow from
each other (you should only draw four arrows).

Exercise by Tommi Jaakola

Exercise by Tommi Jaakola


