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Basic Problems for HMMs
Use the compact notation = (A, B, ).

Based on slides by Manolis Kellis
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HMM Elements

states S = {S1, …, SN} states qt S

observations V = {v1, …, vM} observations Ot V

initial state
distribution

= { i}

i = P(q1 = Si)
1 i N

state transition
probability distribution

A = {aij}
aij = P(qt = Sj | qt–1 = Si)

1 i, j N

observation symbol
probability distribution

B = {bj(k)}
bj(k) = P(vk at t | qt = Sj}

1 j N, 1 k M

Forward Backward Algorithm (Scoring)

forward
variable

t(i) = P(O1 O2 … Ot, qt = Si | ) probability of partial observations
O1O2…Ot (until time t) and state Si at
time t, given model

backward
variable

t(i) = P(Ot+1 Ot+2 … OT | qt = Si, ) probability of partial observations
Ot+1…OT given state Si at time t and
model

Posterior Decoding Algorithm

t(i) = P(qt = Si | O, )

t(i) = t(i) t(i) / i t(i) t(i)
probability of being in state Si at time t,
given observations O and model

Viterbi Algorithm (Decoding)

t(i) = max       P(q1 … qt = Si, O1 ... Ot | ) best score (highest probability) along
single path, at time t, which accounts for
first t observations and ends in state Si

q1…qt–1

Markov Models and Markov Chains
Learning Goals

Describe the properties of a Markov chain
Describe the relationship between a Markov
Chain and a Markov Model
Describe the elements of a Markov Chain



Markov Chains and Markov Models
AMarkov chain is a stochastic process with the Markov property.

Stochastic process
probabilistic counterpart to a deterministic process
a collection of r.v.’s that evolve over time

Markov property
memoryless: conditional probability distribution of future states
depends only on present state

system state is
fully observable partially observable

system is
autonomous Markov chain Hidden Markov Models

controlled Markov decision process partially observable
Markov decision process

Markov Chains
We can model a Markov chain as a triplet (S, , A), where

S: finite set of N = |S| states
: initial state probabilities { i}

A: state transition probabilities {aij}

A MC outputs an (observable) state at each (discrete) time step, t = 1,…,T.

The probability of observation sequence O = {O1,…,OT}, where Ot S is
P(O | Model) = P(q1,…,qT)

= P(q1) P(q2 | q1) P(q3 | q1,q2) … P(qt | q1,…,qt-1) … P(qT | q1,…,qT-1)

= P(q1) P(q2 | q1) … P(qt | qt-1) … P(qT | qT-1)

q2q1 … qT

What properties must
and A satisfy?



Markov Model of Weather
Once a day (e.g. at noon), the weather is observed as one of

state 1 : rainy state 2: cloudy state 3: sunny
The state transition probabilities are

(Notice that each row sums to 1.)

Questions:
1.Given that the weather on day 1 (t = 1) is sunny (state 3), what is
the probability that the weather for the next 7 days will be “sun sun
rain rain sun cloudy sun”?

2.Given that the model is state i, what is the probability that it stays in
state i for exactly d days? What is the expected duration in state i
(also conditioned on starting in state i)?
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Solution to Q1
O = {S3, S3, S3, S1, S1, S3, S2, S3}

P(O | Model)

= P(S3, S3, S3, S1, S1, S3, S2, S3 | Model)

= P(S3) P(S3|S3) P(S3|S3) P(S1|S3)
P(S1|S1) P(S3|S1) P(S2| S3) P(S3|S2)

= 3 · a33 · a33 · a31 · a11 · a13 · a32 · a23

= (1)(0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)

= 1.536 × 10-4

S

Solution to Q2
O = {Si, Si, Si, …, Si, Sj Si}

1 2 3 d d+1

P(O | Model, q1 = Si) = (aii)d–1(1 – aii) = pi(d)
where pi(d) is the (discrete) PDF of duration d in state i.

Notice that Di ~ geometric(p), where p = 1 – aii is the
probability of success (exiting state i) and there are d – 1 failures
before the first success.

Then
Intuition: Consider a fair die. If the
probability of success (a “1”) is p = 1/6,
it will take 1/p = 6 rolls until a success.

For example, the expected number of consecutive days of rainy
weather is 1/a11 = 1/0.6 = 1.67; for cloudy, 2.5; for sunny, 5.

the “math” way: X ~ geom(p)

for x , |x| 1,

S



Hidden Markov Models
Learning Goals

Describe the difference between Markov
Chains and Hidden Markov Models
Describe applications of HMMs
Describe the elements of a HMM
Describe the basic problems for HMMs

Hidden Markov Models
Now we would like to model pairs of sequences.
There exists an underlying stochastic process that is hidden
(not observable directly).
But it affects observations (that we can collect directly).

q2q1 … qTstates

observations O2O1 … OT

some books use

yi’s (label)

xi’s (feature)



HMMs are Everywhere

application states observations
weather inference seasons
dishonest casino
(casino has fair die and
loaded die, casino switches
between dice on average
once every 20 turns)

dice used

missile tracking position
speech recognition phoneme
NLP part of speech tagging part of speech
computational biology protein structure
medicine disease (state of progression)

Elements of an HMM
A5 tuple (S, V, , A, B), where

S: finite set of states {S1, …, SN}

V: finite set of observations per state {v1, …, vM}

: initial state distribution { i}

A: state transition probability distribution {aij}

B: observation symbol probability distribution {bj(k)}

bj(k) = P(vk at t | qt = Sj}, 1 j N

1 k M

A HMM outputs only emitted symbols O = {O1,…,OT}, where Ot V.
Both the underlying states and random walk between states are hidden.

Note that...

transitions...

and emissions…

depend only
on current state.



HMMs as a Generative Model
Given S, V, , A, B, the HMM can be used as a generator to
give an observation sequence

O = O1O2…OT.

1) Choose initial state q1 = Si according to initial state
distribution .

2) Set t = 1.
3) Choose Ot = vk according to symbol probability

distribution in state Si, i.e., bi(k).
4) Transit to new state qt+1 = Sj according to state

transition probability distribution for state Si, i.e., aij.
5) Set t = t + 1. Return to step 3 if t < T. Otherwise stop.

Scoring HMMs
Learning Goals

Describe how to score an observation over a
single path and over multiple paths
Describe the forward algorithm



Scoring a Sequence over a Single Path

Calculate P(q, O | ).

q2q1 … qTstates

observations O2O1 … OT

Scoring a Sequence over All Paths
Calculate P(O | ).

Naïve (brute force) approach
P(O | ) = q P(q, O | )

How many calculations are required (big O)? _____



The Forward Algorithm
Define the forward variable as

t(i) = P(O1 O2 … Ot, qt = Si | )

i.e. the probability of the partial observation sequence
O1O2…Ot (until time t) and state Si at time t, given the model .

Use induction! Assume we know t(i) for 1 i N.

S2

S1

SN

t

t(i)
t + 1

t+1(j)

Sj

a1j

a2j

aNj sum ending
in state Si
at time t

transition
from state Si
to state Sj

at time t to t+1

emission of
observation Ot+1
from state Sj
at time t+1

updated sum

sum over all possible previous states Si

The Forward Algorithm
1) Initialization

2) Induction

3) Termination

[Proofs for Initialization and Termination Steps]

Perform for all states for given t,
then advance t.



Dynamic Programming Table

st
at
e

1

2

N

1 2 3 t T

observation

t(i)

The Forward Variable
We showed the induction step for t+1(j) through intuition. Can we prove it?



The Forward Algorithm
What is the complexity of the forward algorithm?
time complexity: _____

compare to brute force O(NT·T)

e.g. N = 5, T = 100, need ~3k computations vs 1072

space complexity: _____

Practical Issues
underflow use log probabilities for model
for sums of probabilities, use log sum exp trick

Decoding HMMs
Learning Goals

Describe how to decode the state sequence
Describe the Viterbi algorithm



Posterior Decoding
We want to compute

qt = argmax P(qt = Si | O, )

Define t(i) = P(qt = Si | O, ), i.e. the probability of being in
state Si at time t, given observation sequence O and model .

Then

Si

We just determined P(O | )
using the forward algorithm.

We still need to determine
P(O, qt = Si | ).

Probabilities for Posterior Decoding
P(O, qt = Si | ) = P(O1…Ot, qt = Si | ) P(Ot+1…OT | qt = Si, )

t(i)t(i)

…

…

…

…

qt = Si

Ot Ot+1

q1

O1

qT

OT



The Backward Algorithm
Define the backward variable as

t(i) = P(Ot+1 Ot+2 … OT | qt = Si, )

i.e. the probability of the partial observation sequence Ot+1…OT
given state Si at time t and the model .
[Note that the state at time t is now given and on RHS of conditional.]

1) Initialization (arbitrarily define T(i) to be 1 for all i)

2) Induction

(an alternative approach, useful later too)

S2

S1

SN

t + 1

t+1(j)
t

t(i)

Si

ai1

ai2

aiN

Dynamic Programming Table

st
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N

1 2 3 t T

observation

t(i)



Posterior Decoding
Then

Now solve

st
at
e

1

2

N

1 2 3 t T

observation

t(i)

Posterior Decoding
We found the individually most likely state qt at time t.

The Good
maximizes expected number of correct states

The Bad
may result in invalid path
(not all Si Sj transitions may be possible)

most probable state is most likely to be correct at
any instant, but sequence of individually probable
states is not likely to be most probable sequence



Viterbi Decoding
Goal: Find single best state sequence.

q* = argmaxq P(q | O, ) = argmaxq P(q, O | )

Define

i.e. the best score (highest probability) along a single path, at
time t, which accounts for the first t observations and ends in
state Si.

Compare to algorithm for t(i) = P(O1 … Ot, qt = Si | ).
To determine best path to qt+1 = Sj, compute t+1(j).
best path to qt = Si t(i)
transition from qt = Si to qt+1 = Sj aij
emission of Ot+1 from qt+1 = Sj bj(Ot+1)
to retrieve state sequence, also need traceback pointer

t(i) = state Si that maximizes t(i)

The Viterbi Algorithm
1) Initialization

2) Induction

3) Termination

4) Path (state sequence) backtracking



The Viterbi Algorithm
1) Initialization

2) Induction

3) Termination

4) Path (state sequence) backtracking

Perform for all states for given t,
then advance t.

S

The Viterbi Algorithm
similar to forward algorithm (use max instead of sum)
use DP table to compute
same complexity as forward algorithm

Practical Issues
underflow issues use log probabilities for model
for logs of products of probabilities, use sum of logs



Learning HMMs
Learning Goals

Describe how to learn HMM parameters
Describe the Baum Welch algorithm

Learning
Goal
Adjust the model parameters = (A, B, ) to
maximize P(O | ), i.e. the probability of the
observation sequence(s) given the model.

Supervised Approach
Assume we have complete data (we know the
underlying states). Use MLE.



Supervised Learning Example
state space S = {1, 2}
observation space V = {e, f, g, h}
training set 1 2 1 2 1 2 1 2

e g e h f h f g

What are the optimal model parameters?

Pseudocounts
For small training set, the parameters may overfit.
P(O | ) is maximized but is unreasonable
probabilities of 0 are problematic

Add pseudocounts to represent our prior belief.
large pseudocounts large regularization
small pseudocounts small regularization

(just to avoid P = 0)



Learning
Unsupervised Approach
we do not know the underlying states
no known way to analytically solve for optimal model

Ideas
use iterative algorithm to locally maximize P(O | )

either gradient descent or EM work
Baum Welch algorithm based on EM is most popular

Unsupervised Learning
Goal

Recall t(i) = P(qt = Si | O, ), i.e. the probability of being in
state Si at time t, given observation sequence O and model .
Can we use this to solve for any of the above terms?



Expected Number of Transitions
Define

t(i, j) = P(qt = Si, qt+1 = Sj | O, )

i.e. the probability of being in state Si at time t, and state Sj at
time t + 1, given the model and the observation sequence.

…

…

…

…

qt = Si

Ot Ot+1

q1

O1

qT

OT

qt+1 = Sj

t(Si) t+1(Sj)

To calculate the numerator,
t(Si) aij bj(Ot+1) t+1(Sj)

We already know P(O | )
using the forward algorithm.

aij

bj(Ot+1)

Unsupervised Learning
Goal

S



Baum Welch Algorithm
Initialization
Set = (A, B, ) to random initial conditions (or
using prior information)

Iteration (repeat until convergence)
Compute t(i) and t(i) using forward backward algo

Compute P(O | ) [E step]
Compute t(i) and t(i,j)

Update model parameters [M step]

Baum Welch Algorithm
Time complexity: O(N 2T) · (# iterations)

Guaranteed to increase likelihood P(O | ) via EM
but not guaranteed to find globally optimal *

Practical Issues
Use multiple training sequences (sum over them)
Apply smoothing to avoid zero counts and improve
generalization (add pseudocounts)



HMMs and Protein Structure
One biological application of HMMs is to determine the secondary structure
(i.e. the general three dimensional shape) of a protein. This general shape is
made up of alpha helices, beta sheets, and other structures. In this problem,
we will assume that the amino acid composition of these regions is governed
by an HMM.

To keep this problem relatively simple, we do not use actual transition values
or emission probabilities. The start state is always “other”. We will use the
state transition probabilities and emission probabilities below.

e.g. P(Alpha Helix Beta Sheet) = 0.1

alpha beta other

alpha 0.7 0.1 0.2

beta 0.2 0.6 0.2

other 0.3 0.3 0.4

amino acid alpha beta other

M 0.35 0.10 0.05

L 0.30 0.05 0.15

N 0.15 0.30 0.20

E 0.10 0.40 0.15

A 0.05 0.00 0.20

G 0.05 0.15 0.25

Based on exercise by Manolis Kellis

Protein Structure Questions
1) What is the probability P(q = O , O = ML)?

2) How many paths could give rise to the sequence O
= MLN? What is the total probability P(O)?

3) Give the most likely state transition path q* for the
amino acid sequence MLN using the Viterbi
algorithm. What is P(q*,O)?

Compare this to P(O) above. What does this say
about the reliability of the Viterbi path?

Based on exercise by Manolis Kellis


