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Learning Theory Motivation
Learning Goals

Discuss the types of questions we can address
using learning theory



Computational Learning Theory
(or why ML works)

We have seen a number of learning algorithms

How can we tell if a learning algorithm will do a good
job?
experimental results
theoretical analysis

Why theory?

Based on slides by Piyush Rai

Computational Learning Theory
Subfield devoted to mathematical analysis of ML algos
led to PAC learning and VC theory

PAC = probably and approximately correct
VC = Vapnik Chervonenkis

Relate theory to
probability of successful learning
number of training examples
needed
complexity of hypothesis space
accuracy to which target function
is approximated
manner in which training
examples should be presented

Annual conference:
Conference on Learning Theory (COLT)

Based on slides by Eric Eaton



Review: Bias Variance Tradeoff
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“simple” model “complex” modelcorrect fit
0 + 1x 0 + 1x + 2x 2

0 + 1x + 2x 2 + 3x 3 + 4x 4

If relationship between x and y is not
linear, then given large (infinite)
training set, fitting linear model would
still fail to capture data structure

model has high bias
bias = expected generalization error
if fit to large (infinite) training set
(aka structural error)

When fitting complex model, large risk
of fitting patterns present in small,
finite training set but do not reflect
wider relationship between x and y

model has high variance
variance = expected spread in
generalization error (aka estimation
error)

balance

Based on notes by Andrew Ng

Both simple and complex models have large generalization error
BUT problems suffered by two models are very different

Questions
Can we formalize bias variance tradeoff?
Can we automatically decide model complexity?

Why should doing well on training set tell us about
generalization error?
Can we relate error on training set to generalization
error?

Are there conditions under which we can actually prove
that learning algorithms work well?

Based on notes by Andrew Ng



Setup
Hypothesis class is a space of functions
Learning algorithm learns function (hypothesis) h
Assume h is learned using sample of n iid training
examples drawn from P(x, y)

0/1 training error (aka empirical risk) of h

0/1 expected error (aka risk) of h

Expected error is generally worse than training error
We want to know how much worse it is
… without doing experiments (e.g. cross validation)

Based on slides by Piyush Rai

Roadmap
We will start by analyzing finite hypothesis
spaces (| | < ) with zero training error
(Rn(h) = 0) Haussler’s Theorem

We will then generalize to finite hypothesis
spaces (| | < ) with non zero training error
(Rn(h) > 0) General PAC Bounds

We will finally discuss infinite hypothesis
spaces (| | = ) VC dimension

today

next time



Learning Theory
for Finite Hypothesis Spaces

Learning Goals

State PAC bounds
Apply PAC bounds

Facebook Example (fictional)

FB holds competition for best face recognition
classifier (+1 if image contains face, 1 if not)

FB receives 20k submissions
FB evaluates all 20k submissions on n labeled images (not
previously shown to competitors) and chooses winner
Winner obtains 98% accuracy on n images

FB already has algorithm known to be 95% accurate
Should FB deploy winner’s algorithm?
FB cannot risk doing worse … would be PR disaster!

Based on slides by David Sontag



Generalization of Finite Hypothesis Spaces

Theorem [Haussler ’88]
Given finite hypothesis space , dataset with n iid
samples, and probability of error on one sample >
(where 0 1), then for any learned hypothesis h
that is consistent with the training data (Rn(h) = 0),

P(R(h) > ) | |e–n

Observations
Probability of h being “bad” (zero training error, positive
generalization error) decreases exponentially with n
While zero errors in training set does not imply zero errors in
test set, it does bound expected error

Based on slides by Carlos Guestrin and David Sontag

Using a PAC Bound
By Haussler’s theorem, for all consistent h,

P(R(h) > ) | |e–n

Suppose we are willing to tolerate at most a probability of
having > error. P(R(h) > ) | |e–n

ln(| |e–n ) ln( )
ln(| |) – n ln( )

We have 2 typical use cases:
1) Pick and . Compute n.

larger hypothesis
space | | requires
more examples

higher error
threshold allows
fewer examples Based on slides by Carlos Guestrin and David Sontag

This gives the sufficient number
of examples for which the
learned hypothesis will be
probably (with probability 1 – )
and approximately (with error )
correct. PAC learning

(probably and approximately correct)

higher (larger
tolerance) allows
fewer examples



Using a PAC Bound
We know that for all consistent h,

P(R(h) > ) | |e–n

Suppose we are willing to tolerate at most a probability of
having > error. P(R(h) > ) | |e–n

ln(| |e–n ) ln( )
ln(| |) – n ln( )

We have 2 typical use cases:
2) Pick n and . Compute .

more examples n
lowers error bound

Based on slides by Carlos Guestrin and David Sontag

We supposed P(R(h) > ) .
Then P(R(h) ) > 1 – .

In other words, with probability at
least 1 – , we can upper bound
generalization error R(h) .

(probably and approximately correct)

larger hypothesis space
| | raises error bound

higher (larger
tolerance) lowers

error bound

Limitations of Haussler ’88 Bound

There may be no consistent hypothesis h (where
Rn(h) = 0)

extend to non zero training error

The size of the hypothesis space | | may be
really big or continuous

extend to infinite sized hypothesis spaces

Based on slides by Carlos Guestrin and David Sontag



Extending to Non Zero Training Error

So far…
Learner with zero training errors (Rn(h) = 0) may
make mistakes on test set (R(h) > )

What if our classifier has Rn(h) > 0?
Can we relate R(h) to Rn(h)? That is, can we find
bound on generalization error R(h) for learner h with
training error Rn(h)?

Based on slides by Carlos Guestrin and David Sontag

General PAC Bounds
Theorem [Generalization Bound for | | Hypotheses]
Given finite hypothesis space , dataset with n iid
samples, and probability of error on one sample >
(where 0 1), then for any learned hypothesis h,

Compare to Haussler’s Theorem
For any learned hypothesis h that is consistent with
training data (Rn(h) = 0),

P(R(h) > ) | |e–n

Based on slides by Carlos Guestrin and David Sontag



Using a PAC Bound
For all h,

As before, suppose we are willing to tolerate at most a
probability of having > error.

n grows as square of (1/ )
for zero error case, n grows linearly with (1/ )

since < 1, then for given and , non zero
training error case requires more examples

We supposed P(R(h) – Rn(h) > ) .
Then P(R(h) – Rn(h) ) > 1 – .
In other words, with probability at least

1 – , we have R(h) – Rn(h) .
That is, we can upper bound

generalization error R(h) Rn(h) + .
Based on slides by Carlos Guestrin and David Sontag

PAC Bound and Bias Variance Tradeoff
With probability at least 1 – ,

Important:
PAC bound holds for all h .
It does not guarantee that algorithm finds best h!

bias variance
For small | |
high bias (is there a good
h ?)
low variance (because
bound is tighter)

For large | |
low bias (assuming we
can find good h )
high variance (because
bound is looser)

Based on slides by Carlos Guestrin and David Sontag



Facebook Example (fictional)

FB holds competition for best face recognition
classifier (+1 if image contains face, 1 if not)

FB receives 20k submissions
FB evaluates all 20k submissions on n labeled images (not
previously shown to competitors) and chooses winner
Winner obtains 98% accuracy on n images

FB already has algorithm known to be 95% accurate
Should FB deploy winner’s algorithm?
FB cannot risk doing worse … would be PR disaster!

Based on slides by David Sontag

Applying PAC Bounds to Facebook
R(FB) = 0.05 (existing system)

new system
suppose we want at least 99% confidence

what if n = 100?

what if n = 10k?

Based on slides by David Sontag

| | = 20k modelsRn(h) = 0.02

= 0.01



(extra slides)

Learning Theory Proofs
Learning Goals

Glimpse into the black box
Formally prove Haussler’s Theorem
Gain intuition towards proving general PAC bounds

How Likely will a Bad Hypothesis be
Consistent with the Training Set?

Assume finite hypothesis space (| | < ) with
some h with zero training error (Rn(h) = 0)

Hypothesis h is “bad” if Rn(h) = 0 and R(h) > 

h gets all training points right despite true error > 

How likely is a bad hypothesis to get n data points correct?

Based on slides by Carlos Guestrin and David Sontag

we will
generalize later



Interpretation
P(h gets n iid data points right | R(h) > ) e–n

What This Says
If true error > , then h gets n data points right with
very low probability (P e–n )

Equivalent Statement
If h gets n data points right with very high probability
(P > 1 – e–n ), then it is close to perfect (R(h) )

Based on slides by Carlos Guestrin and David Sontag

Are We Done?
No! This only considers one hypothesis!

We need to account formultiple hypotheses
Suppose 1 billion people entered competition, and
each submitted a random function
For small enough n, one submission could be
consistent by chance despite all submissions having
very large true error

Based on slides by Carlos Guestrin and David Sontag



How Likely will At Least One Bad Hypothesis be
Consistent with the Training Set?

Let be set of hypotheses with R(h) > 
How likely will any h be consistent with training data?
We need a bound that holds for all h !

What is the probability that at least one h is “bad”?

Lemma [Union Bound]
Let A1, A2, …, Ak be k different events (not necessarily independent). Then
P(A1 … Ak) 

P(A1) + … + P(Ak).

Intuitively, the probability of any one of k events happening is at most the sums of the
probabilities of the k different events. (The bound is tight for disjoint events.)

Based on slides by Carlos Guestrin and David Sontag

(This slide intentionally left blank.)



Generalization Error of Finite Hypothesis Spaces

Theorem [Haussler ’88]
Given finite hypothesis space , dataset with n iid
samples, and probability of error on one sample >
(where 0 1), then for any learned hypothesis h
that is consistent with the training data (Rn(h) = 0),

P(R(h) > ) | |e–n

Next
Extending to Non Zero Training Error

Based on slides by Carlos Guestrin and David Sontag

(This slide intentionally left blank.)



Simpler Question: What is the
Expected Error of a Hypothesis?

Lemma [Chernoff Bound] (aka Hoeffding inequality)
Let Z1, …, Zm bem iid random variables drawn from a
Bernouilli( ) distribution, i.e. P(Zi = 1) = and
P(Zi = 0) = 1 – . Let be the mean of
these r.v.s, and let any > 0 be fixed. Then

Idea: If we take (the average ofm Bernouilli( ) r.v.s) to be
our estimate of , then the probability of our being far away
from the true value is small so long asm is large.
Example: Suppose you have a coin whose chance of landing on heads is .
If you toss itm times and calculate the fraction of times that it came up
heads, that will be a good estimate of with high probability (ifm is
large).

Based on notes by Andrew Ng

Generalization Error for | | Hypotheses

Applying similar reasoning as before
For a single hypothesis h , apply Chernoff bound

For at least one hypothesis h , apply Union bound

Theorem [Generalization Bound for | | Hypotheses]
Given finite hypothesis space , dataset with n iid
samples, and probability of error on one sample > (0 

1), then for any learned hypothesis h,

Based on slides by Carlos Guestrin and David Sontag


