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Roadmap
We will start by analyzing finite hypothesis
spaces (| | < ) with zero training error
(Rn(h) = 0) Haussler’s Theorem

We will then generalize to finite hypothesis
spaces (| | < ) with non zero training error
(Rn(h) > 0) General PAC Bounds

We will finally discuss infinite hypothesis
spaces (| | = ) VC dimension

last time

today



PAC Bounds
Given finite hypothesis space , dataset with n iid
samples, and probability of error on one sample >
(where 0 1), then …

Theorem [Haussler ’88]
… for any learned hypothesis h that is consistent with
the training data (Rn(h) = 0),

P(R(h) > ) | |e–n

Theorem [Generalization Bound for | | Hypotheses]
… for any learned hypothesis h,

Based on slides by Carlos Guestrin and David Sontag

Limitations of PAC Bound
With probability at least 1 – ,

What happens for infinite hypothesis spaces
(| | = ), e.g. = {all linear classifiers}?
PAC bound becomes trivial (“infinite” variance)
We need another way of measuring | |

bias variance

Based on slides by Piyush Rai



VC Dimension
Learning Goals

Define shattering
Define VC dimension

Vapnik Chervonenkis (VC) Dimension
Goal
Measure “complexity” of a particular class of models
independently of training set

Intuition
We only care about the maximum number of points
that can be classified correctly

Based on slides by Carlos Guestrin and David Sontag



Example
How many points can a linear boundary classify exactly in 1D?

1 point?

2 points?

3 points?

Based on slides by Carlos Guestrin and David Sontag

Shattering
Definition
A set S = {x(1) , … , x(m)} of points x(i) is
shattered by hypothesis class if and only if
for any set of labels {y(1), …, y(m)},
there exists some consistent h ,
i.e. h(x(i)) = y(i) for all i = 1,…,m.

(Note that S has no relation to the training set.)

Based on notes by Andrew Ng



More Examples
Suppose is the set of linear classifiers in 2D.
Can you find a set of 3 points in 2D that can shatter?

Based on notes by Andrew Ng

A Note
There may exist a set of 3 points in 2D that cannot shatter.

We only care that there exists at least one set of 3 points that can shatter.
Rule of thumb: Pick points with maximum separability (e.g. equally spaced
along circle).

Continuing our example… Can you find a set of 4 points that can shatter?
Prove or disprove.

No consistent linear classifier
exists for this labeling.

Based on notes by Andrew Ng and example by Eric Eaton



VC Dimension and Shattering
We use the concept of shattering to define VC dimension.

To show that hypothesis class has VC dimension d in input
space , consider this adversarial “shattering game”:
We choose d points in positioned however we want
Adversary labels these d points
We choose a hypothesis h that separates the points

The VC dimension of in is the maximum d we can choose so
that we always succeed.

Formal Definition
Given hypothesis class and input space , the Vapnik
Chervonenkis dimension VC( ) over input is the size of the
largest set of points in that is shattered by .
If can shatter arbitrarily large sets, then VC( ) = .

Based on notes by Andrew Ng and slides by Piyush Rai

VC Dimension of Linear Classifiers
For hyperplane with bias, we (informally) showed that…
VC dim in 1 = 2

VC dim in 2 = 3

VC dim in d?

Recall that such a classifier in d is defined by d+1
parameters (one per feature + bias term)
for linear classifiers, high d high complexity
rule of thumb:

Based on slides by Piyush Rai



More VC Dimension Examples
What is the VC dimension of 1NN?

What is the VC dimension of a SVM with RBF kernel?

Based on examples by Piyush Rai [Image from Chris Burges]

Using VC Dimension in Generalization Bounds

Recall PAC based generalization bound for hypothesis class :

If | | = but VC( ) = d in ,

where n = training set size
d = VC dimension of hypothesis class
= probability that bound fails

Note same bias/variance trade off as always!

Based on slides by Piyush Rai

For linear SVM, what
does this bound imply?



VC Dimension of SVMs
But for RBF SVM, VC( ) = . Is this bad?
Not really. SVM’s large margin property ensures good generalization.

Theorem (Vapnik 1982): Generalization Bound for SVM
Given n data points such that for all i, x(i) d

and ||x(i)|| < R.
Define to be the set of classifiers in d with margin on X.

Then VC( ) is bounded by

And with probability 1 – ,

Note: large small VC dim low complexity of good generalization
Based on slides by Piyush Rai

Learning Theory Take Aways
Care about generalization error, not training error
Standard PAC bounds only apply to finite hypothesis
classes
VC dimension is measure of complexity of infinite sized
hypothesis classes

We have formalized the following intuition: suppose we
find a model with low training error (low bias)

if | | large (relative to size of training data), then most likely got lucky
(high variance)
if | | sufficiently constrained and / or large training set, then low training
error likely to be evidence of low generalization error (low variance)

All of this theory is for binary classification
it can be generalized to multi class and regression

Based on slides by Piyush Rai and Eric Eaton


