
HMC CS 158, Fall 2017

Problem Set 4 Programming: Logistic Regression, Perceptron

Goals:
• To investigate what is and is not guaranteed by perceptron theory.
• To statistically compare the performance of different classifiers.
• To investigate how feature preprocessing might affect performance.

For this assignment, you can work individually though you are encouraged to work with a partner.
You should sign up for partners on Canvas (People→ PS4 Groups). If you are looking for a partner,
try Piazza. If, after trying Piazza, you are having trouble finding a partner, e-mail Jessica.

Submission

You should submit any answers to the exercises in a single file writeup.pdf. This writeup should
include your name and the assignment number at the top of the first page, and it should clearly
label all problems. Additionally, cite any collaborators and sources of help you received (excluding
course staff), and if you are using slip days, please also indicate this at the top of your document.

Your code should be commented appropriately (though you do not need to go overboard). The
most important things:
• Your name and the assignment number should be at the top of each file.
• Each class and method should have an appropriate doctsring.
• If anything is complicated, it should include some comments.

There are many possible ways to approach the programming portion of this assignment, which
makes code style and comments very important so that staff can understand what you did. For
this reason, you will lose points for poorly commented or poorly organized code.

When you are ready to submit, make sure that your code compiles and remove any debugging
statements. Then rename the top-level directory as <username1>_<username2>_titanic, with
the usernames in alphabetical order (e.g. hadas_yjw_titanic). This directory should include the
electronic version of your writeup and main code, any files necessary to run your code (including
any code and data provided by staff), and follow the same structure as the assignment directory
provided by staff. So, for this assignment, your directory should have the following structure:
• <username1>_<username2>_ps4/

– data/

∗ perceptron_data.csv

∗ phoneme_train.csv

– source/

∗ phoneme.py (with your modifications)
∗ perceptron.py (with your modifications)
∗ util.py

– writeup.pdf

– phoneme.pdf (pdf printout of phoneme.py)
– perceptron.pdf (pdf printout of perceptron.py)

Parts of this assignment are adapted from course material by Tommi Jaakola (MIT).

1

Package this directory as a single <username1>_<username2>_ps4.zip file, and submit the archive.
Additionally, to aid the staff in grading, submit your pdf’s as separate files.

1 Perceptron [10 pts]

In this problem, we will investigate properties of the perceptron, in particular, exploring how the
perceptron algorithm behaves depending on various algorithm options.

code and data

• code : perceptron.py
• data : perceptron_data.csv

The perceptron algorithm is remarkably simple yet it comes with a mistake guarantee. The guar-
antee is not statistical in nature but applies to all sequences of examples (and labels) provided
that there exists a linear reference classifier (the maximum-margin classifier, whose parameters are
unknown to us) that can correctly classify all the examples in the sequence with the specific margin.

(a) (4 pts) We are interested in investigating the number of mistakes made by the perceptron
algorithm. Since scikit-learn’s Perceptron class does not keep track of mistakes, we will
have to roll out our own classifier. Implement the missing portions of Perceptron.fit(...).

Hint : To check your implementation, you may want to work out the small example by hand
and compare the results against your code.1

(b) (2 pts) Let us now consider a larger data set (perceptron_data.csv). Train the perceptron
classifier (without offset) on the provided data set using two different initializations: θ(0) =
(0, 0)T and θ(0) = (1, 0)T . The two training procedures should traverse the data points in the
same order and run until convergence.

What are your trained coefficients θ∗? Do the two training procedures converge to the same
solution? Why or why not? Will both classifiers have the same performance on the training
set? What about on a new, held-out test set?

(c) (2 pts) Compare the value of the mistake bound to the number of mistakes that you are
getting on this data set. Explain why there might be a difference.

Hint : The mistake bound only depends on the margin γ∗ and R = maxi=1,...,n ||x(i)||2. (We
have provided code to compute the margin γ∗ for a maximum-margin classifier on this data.)

(d) (2 pts) Describe an adversarial procedure for selecting the order and value of labeled data
points so as to increase the number of mistakes the perceptron algorithm makes before con-
verging. Assume that the data are linearly separable.

Hint : There are several approaches here. You will get full credit if you can provide one way
to increase the number of mistakes and justify your approach.

1Alternatively, you can compare against scikit-learn’s Perceptron class. If you use scikit-learn, make sure
to refer to the documentation and use the correct model parameters!

2

2 Perceptron vs Logistic Regression [10 pts]

In this problem, we will apply two different classifiers to the problem of phoneme classification, an
important sub-problem of Automatic Speech Recognition (ASR). The task of phoneme classification
is to predict the phoneme label of a phoneme articulation given its corresponding voice signal. In
this problem, we will try to use linear classifiers to distinguish the two kinds of vowel phonemes
“aa” (as in “bot”) and “ae” (as in “bat”) in an acoustic-phonetic corpus called TIMIT2.

code and data

• code : phoneme.py
• data : phoneme_train.csv

documentation

• Perceptron :
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html

• Logistic Regression :
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

• K-Fold Cross-Validation :
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

• Preprocessing :
http://scikit-learn.org/stable/modules/preprocessing.html

We are given 300 training examples of “aa” and “ae” (150 from each class) from TIMIT, and for
each training example, a 61-dimensional real-valued feature vector3 is computed from the voice
signal. The examples of “aa” are labeled as +1 and examples of “ae” are labeled as −1.

In this problem, we would like to compare the performance of different classifiers and preprocessing
methods. Note that for this problem, the starter code purposely has less helper text to encourage
you to explore numpy and scikit-learn documentation. For all classifiers, be sure to use the
correct parameters! (The default settings may not be what you want.)

(a) (2 pts) Before we start analyzing performance, let us understand the data (at a very high
level). Run the perceptron algorithm (with offset) on this data. Is the training data linearly
separable? How do you know? Why is this not surprising?

(b) (1 pts) To obtain a good estimate of the each classifier’s performance, we will average over
multiple trials of k-fold cross-validation. As a reminder of the experimental procedure:

For each trial, split the training data randomly into k folds, choose one to be the
“test” fold and train the classifier on the remaining k− 1 folds. Then, evaluate the
trained model on the held-out “test” fold to obtain its performance. Repeat this
process until each fold has been the test fold exactly once, then advance to the next
trial.

2https://catalog.ldc.upenn.edu/LDC93S1
3Unfortunately, the large dimension of the data set prevents easy visualization, but we will learn dimensionality

reduction techniques later in the course to aid us in this task.

3

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
http://scikit-learn.org/stable/modules/preprocessing.html
https://catalog.ldc.upenn.edu/LDC93S1

Implement cv_performance_one_trial(...) and cv_performance(...) according to the
provided specifications.

We will compare the performances of three classifiers:

• (P) perceptron, with offset, without regularization
• (L) logistic regression, with offset, without regularization
• (R) logistic regression, with offset, with L2-regularization (C = 1)

To compare performance, we will compute statistics across 10 trials4 of 10-fold cross-validation:

accuracies
classifier µ σ

no preprocessing
P
L
R

with standardization
P
L
R

p-values
no preprocessing standardization
P L R P L R

no preprocessing
P -
L - -
R - - -

standardization
P - - - -
L - - - - -
R - - - - - -

(c) (4 pts) Start by comparing the classifiers on the raw features (i.e. without feature prepro-
cessing).

i. (1 pts) To properly make comparisons, we have to make certain that they are trained
and tested on exactly the same subsets of the data on each trial/fold. Create these folds,
being certain to shuffle the data at the start of each trial but never within a trial.

ii. (1 pts) Report the mean and standard deviation of prediction accuracy for the different
classifiers (up to three significant figures, computing statistics across all trials and folds).

iii. (1 pts) For each pairwise combination of classifiers, calculate their t-test score to figure
out if the differences are significant. Remember to use a two-tailed paired t-test (which
can be computed using scipy.stats.ttest_rel(...)). To ease visualization, highlight
any significant differences5.

iv. (1 pts) Comment on your findings. Were there any surprises?

4In practice, we typically use many more trials, e.g. n = 100 or n = 1000 trials. But, for the sake of time, we will
use n = 10 here.

5Use a threshold of α = 0.05/15 = 3.33 × 10−4. Because we have multiple comparisons, it becomes more likely
that any comparison will differ by random choice alone. Thus, we must perform multiple hypothesis correction. Here,
we use simple Bonferroni correction: If we are testing m hypotheses, then we test each individual hypothesis at a
statistical significance level of 1/m times what it would be if only one hypothesis were tested. Though technically,
since the multiple t-tests are not independent from one another, we should be using ANOVA, which generalizes the
t-test to more than two groups.

4

https://en.wikipedia.org/wiki/Multiple_comparisons_problem
https://en.wikipedia.org/wiki/Bonferroni_correction
https://en.wikipedia.org/wiki/Analysis_of_variance

(d) (3 pts) Next, let us investigate the effect of data preprocessing, in particular feature standard-
ization, on classifier performance. Feature standardization transforms the data by removing
the mean value of each feature, then scaling it by dividing non-constant features by their
standard deviation.6

Use the preprocessing package from scikit-learn to standardize the features. Then repeat
your experiments above, and comment on your findings. Which data preprocessing method
and classifier performs best?

6Implementation Note: When standardizing the features, it is important to store the values used for standardiza-
tion – the mean value and the standard deviation used for the computations. After learning the parameters from
the model, we often want to predict on a held-out test dataset. Given new features, we must first normalize these
features using the mean and standard deviation that we had previously computed from the training set.

5

	Perceptron [10 pts]
	Perceptron vs Logistic Regression [10 pts]

