
HMC CS 158, Fall 2017

Problem Set 7 Programming: Multiclass Classification, Bagging
Goals:
• To open up the “black-box” by implementing multiclass classification and bagging.
• To investigate how output codes and loss functions affect multiclass classifier performance.
• To investigate how bagging compares to random forests and how random forests can be used

for feature selection.
• To investigate whether boosted classifiers overfit.

For this assignment, you can work individually though you are encouraged to work with a partner.
You should sign up for partners on Canvas (People→ PS7 Groups). If you are looking for a partner,
try Piazza. If, after trying Piazza, you are having trouble finding a partner, e-mail Jessica.

Submission

You should submit any answers to the exercises in a single file writeup.pdf. This writeup should
include your name and the assignment number at the top of the first page, and it should clearly
label all problems. Additionally, cite any collaborators and sources of help you received (excluding
course staff), and if you are using slip days, please also indicate this at the top of your document.

Your code should be commented appropriately (though you do not need to go overboard). The
most important things:
• Your name and the assignment number should be at the top of each file.
• Each class and method should have an appropriate doctsring.
• If anything is complicated, it should include some comments.

There are many possible ways to approach the programming portion of this assignment, which
makes code style and comments very important so that staff can understand what you did. For
this reason, you will lose points for poorly commented or poorly organized code.

When you are ready to submit, make sure that your code compiles and remove any debugging
statements. Then rename the top-level directory as <username1>_<username2>_ps7, with the
usernames in alphabetical order (e.g. hadas_yjw_ps7). This directory should include the electronic
version of your writeup and main code, any files necessary to run your code (including any code
and data provided by staff), and follow the same structure as the assignment directory provided
by staff. So, for this assignment, your directory should have the following structure:
• <username1>_<username2>_ps7/

– data/

∗ soybean_train.csv

∗ soybean_test.csv

∗ R1.csv

∗ R2.csv

∗ cancer_train.csv (extra credit)
∗ cancer_test.csv (extra credit)

– source/

∗ soybean.py (with your modifications)

Parts of this assignment are adapted from course material by Jenna Wiens (UMich) and Tommi Jaakola (MIT).
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∗ digits.py (with your modifications)
∗ boosting.py (extra credit; with your modifications)
∗ util.py

– writeup.pdf

– soybean.pdf (pdf printout of soybean.py)
– digits.pdf (pdf printout of digits.py)
– boosting.pdf (extra credit; pdf printout of boosting.py)

Package this directory as a single <username1>_<username2>_ps7.zip file, and submit the archive.
Additionally, to aid the staff in grading, submit your pdf’s as separate files.

1 Soybean Multi-class Classification [12 pts]

In this problem, we are going to apply SVMs to the multi-class classification problem of predicting
soybean diseases. We are given the “soybean dataset”1, where inputs x contain 35 attributes, and
the labels y can be one of 15 classes. After removing the examples with missing attributes, the
dataset has 262 training examples and 296 test examples.

code and data

• code : soybean.py
• data : soybean_train.csv, soybean_test.csv
• data (random output codes) : R1.csv, R2.csv

documentation

• SVC (SupportVectorClassifier) :
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Given an output code R and a set of discriminant functions hθ(x) = [h1(x), ..., h`(x)], the output
label of the classification can be computed by the decision rule

ŷ = arg min
y

∑̀
i=1

Loss(R(y, i)hi(x)).

Loss(R(y, i)hi(x)) is usually a monotonically decreasing function g(z), where z = R(y, i)hi(x).
The choice of the output code and the loss function may potentially affect the performance of the
multi-class classification.

In this problem, we will investigate three types of output codes:

• the “one-versus-all” output code, where all columns have exactly one +1 and the rest −1,
• the “one-versus-one” output code, where each column has exactly one +1 and one −1 (the

rest is 0),
• the “random” output code, where each element in the code has a one-half probability of being

+1 or −1 (subject to some additional constraints).

1http://archive.ics.uci.edu/ml/datasets/Soybean+(Large)
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In addition, we will investigate three types of loss functions:

• the Hamming loss function with g(z) = 1−sign(z)
2 ,

• the sigmoid loss function with g(z) = 1
1+exp(αz) ,

• the logistic loss function with g(z) = log(1 + exp(−αz)),

where α is a positive scaling constant.

As we want the comparisons to focus on the choice of output code and loss function, we will train
all the SVMs using a 4th-degree polynomial kernel [K(u,v) = (1+u·v)4] and slack penalty C = 10.

We have provided the function generate_output_codes(...) to construct the “one-versus-all”
and “one-versus-one” output codes for you. In addition, we have provided two random output
codes that you can load through load_code(...).2

Look over the MulticlassSVM class, which utilizes scikit-learn’s SVC class to enable multi-
class classification.3 In particular, MulticlassSVM keeps track of the output code R, the individ-
ual (binary) classifiers svms, and the multiple classes classes. We have already implemented
MulticlassSVM.__init__(...), which sets up the multiple classifiers (but does not learn them).

(a) (1 pts) On a single graph, sketch or plot the three loss functions g(z) for z ∈ [−2, 2], with
α = 1, 2 for the sigmoid and logistic loss functions (so, 5 functions in total). Include this plot
in your writeup.

(b) (4 pts) Implement MulticlassSVM.fit(...), which learns the component binary classifiers
given the training data, and MulticlassSVM.predict(...), which makes predictions on the
data using the decision rule with the associated loss function.

(c) (5 pts) Now compare the different output codes and loss functions:

Number of Errors on Test Data
loss function

Hamming sigmoid logistic

output code

one-versus-all
one-versus-one
random (R1)
random (R2)

i. (2 pts) Train a multiclass classifier using the “one-versus-all” output code. Then evalu-
ate its performance on the test data using each of the three different loss functions, and
report your results.

Why might Hamming loss not be a good loss function for the “one-versus-all” output
code? Hint : For each error, look at

∑l
i=1 Loss(R(y, i)hi(x)) for each class y.

2For those interested in the details, for the random codes, we impose the constraint that there should be no
identical rows and columns in R and that each column of R should have at least one +1 and one −1. To find a good
random code, we first generate a large set of random codes Rt, t = 1, . . . , T , then pick the codes with largest minimum
code word distance ρt = mini,j dH(Rt(i), Rt(j)), where dH(Rt(i), Rt(j)) denotes the Hamming distance between row
vectors Rt(i) and Rt(j) of the code matrix. We have provided two random codes by picking the top 50 codes out of
10k.

3You may notice that SVC already provides for multiclass classification. However, users are limited to one-versus-
one and cannot specify the loss function.
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ii. (2 pts) Train a multiclass classifier using the “one-versus-one” output code. Compare
the performance on the test data with your results above, for all three loss functions.
Which output code performs better for this problem? Why?

iii. (1 pts) Load the two “random” output codes, then train multiclass classifiers for each
of the random output codes, and compare the performance on the test data for all three
loss functions. How do the different loss functions affect the classification results, and
why? (You may want to refer back to your plots of the various loss functions.)

(d) (2 pts) What kind of output code do you think is most suitable for this problem? Why do
you think this is the case?

2 Digit Recognition using Bagging [8 pts]

In this problem, we will study bagging and random forest on a handwritten digit dataset. This
dataset contains 1797 samples (each having 64 features) of hand-written digits, classified into 10
classes.4 However, for this problem, we will only use 720 examples from 4 classes.

code and data

• code : digits.py
• data : digits (provided by scikit-learn)

documentation

• dataset : http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html

• DecisionTreeClassifier :
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

(a) (2 pts) Implement bagging_ensemble(...), which generates a bagging ensemble classifier,
where each base classifier is trained independently on a bootstrap sample of the training data.

Note: If you have trouble implementing bagging_ensemble(...), you may use
sklearn.ensemble.BaggingClassifier. You will not receive any credit for this question,
but you can receive full credit for the analysis below.

(b) (1 pts) Implement random_forest(...). Random forest is similar to bagging except that
for each tree, we select a random subset of the features for training.

Hint : scikit-learn’s DecisionTreeClassifier class allows you to specify max_features,
which restricts the number of features to consider at each split (to a random subset). There-
fore, you can implement random_forest(...) in one-line by modifying bagging_ensemble(...)
to take in an additional parameter max_features equal to the number of features to consider.

Note: If you have trouble implementing random_forest(...), you may use
sklearn.ensemble.RandomForestClassifier. You will not receive any credit for this ques-
tion, but you can receive full credit for the analysis below.

4If you are interested in learning more about this dataset, you can always look up the documentation for
load digits(...). Here, you will find that each example consists of an 8×8 grayscale image (yielding the 64
features), and you can learn how to visualize the examples.
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(c) (3 pts) Run main(...) to compare the performance of these ensemble classifiers using 100
random splits of the digits dataset into training and test sets, where the test set contains
roughly 20% of the data. This generates two plots :

• We vary the number of features considered for the random forest from 1 to 65 (in step
sizes of 2). Then, on a single plot, we plot the accuracy of the bagging classifier against
that of the random forest with varying number of features. (Note: This code may take
several minutes to run.)

• We run the random forest with 8 features considered per split. Then, on a single plot,
we plot the accuracies of the two ensemble classifiers as histograms.

Include these plots in your writeup. How does performance vary with the number of features
considered per split? Which classifier performs better, and why?

(d) (2 pts) One useful application of bagging ensembles is to assess the relative importance of
features. In your own words, describe how you think feature importance might be calculated
when using Decision Trees as your base classifier.

Now, using scikit-learn’s examples5 as a guideline, generate a representation of the relative
importance of each individual pixel for digit recognition (include this plot in your writeup).
For this problem, you are allowed to use sklearn.ensemble.RandomForestClassifier.

What do you observe? Is this surprising?

3 Boosting [+2 pts]

It seems that the boosting algorithm might seriously overfit. Let us see if this is true in practice.

code and data

• code : boosting.py
• data : cancer_train.csv, cancer_test.csv

documentation

• GradientBoostingClassifier:
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html

We have provided a small dataset of 38 training examples and 34 test examples, where each example
has two features and a label for whether the patient has cancer or not. In this problem, we will use
scikit-learn’s GradientBoostingClassifier with loss = 'exponential' to train an AdaBoost
ensemble with decision stumps as the base learners.

(a) (+1 pts) Complete boosting.py based on the specification given in the starter code. In
brief, the code should train an ensemble model, compute the number training and test errors
(y-axis) with respect to the number of ensembles m (x-axis), and finally plot the number of
training errors (blue line) and the number of test errors (red line) as a function of the number
of ensembles. What do you observe about this plot? Does the model overfit?

5http://scikit-learn.org/stable/modules/ensemble.html#feature-importance-evaluation
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(b) (+1 pts) Now let us try to better understand what the boosting algorithm is doing. By
definition, example i has a margin error at level ρ if y(i)hm(x(i)) − ρ ≤ 0. Using the first m
decision stumps in the ensemble, vary ρ ∈ [0, 1] (x-axis), and compute the number of training
examples with a margin error of ρ (y-axis). How do the margin errors change as we increase
m? Use these plots explain your observations in the previous question. Note: Take a close
look at ρ = 0.1 on the plots.
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