
HMC CS 158, Fall 2017

Problem Set 8 Project: Famous Faces

Goals:
• To investigate one application of PCA: eigenfaces.
• To open up the “black-box” of k-means (and k-medoids) clustering.
• To investigate dimensionality reduction and various clustering techniques towards one appli-

cation of machine learning: facial recognition.

For this assignment, you can work individually though you are encouraged to work with a partner.
You should sign up for partners on Canvas (People→ PS8 Groups). If you are looking for a partner,
try Piazza. If, after trying Piazza, you are having trouble finding a partner, e-mail Jessica.

Submission

You should submit any answers to the exercises in a single file writeup.pdf. This writeup should
include your name and the assignment number at the top of the first page, and it should clearly
label all problems. Additionally, cite any collaborators and sources of help you received (excluding
course staff), and if you are using slip days, please also indicate this at the top of your document.

Your code should be commented appropriately. The most important things:
• Your name and the assignment number should be at the top of each file.
• Each class and method should have an appropriate doctsring.
• If anything is complicated, it should include some comments.

There are many possible ways to approach the programming portion of this assignment, which
makes code style and comments very important so that staff can understand what you did. For
this reason, you will lose points for poorly commented or poorly organized code.

When you are ready to submit, make sure that your code compiles and remove any debugging
statements. Then rename the top-level directory as <username1>_<username2>_ps8, with the
usernames in alphabetical order (e.g. hadas_yjw_ps8). This directory should include the electronic
version of your writeup and main code, any files necessary to run your code (including any code
and data provided by staff), and follow the same structure as the assignment directory provided
by staff. So, for this assignment, your directory should have the following structure:
• <username1>_<username2>_ps8/

– source/

∗ cluster.py (with your modifications)
∗ faces.py (with your modifications)
∗ util.py (with your modifications)

– writeup.pdf

– cluster.pdf (pdf printout of cluster.py)
– faces.pdf (pdf printout of faces.py)
– util.pdf (pdf printout of util.py)

Package this directory as a single <username1>_<username2>_ps8.zip file, and submit the archive.

This assignment is adapted from course material by Jenna Wiens (UMich).

1

Additionally, to aid the staff in grading, submit your pdf’s as separate files, and submit your
predictions as a separate file as well.

Introduction

Machine learning techniques have been applied to a variety of image interpretation problems. In
this project, you will investigate facial recognition, which can be treated as a clustering problem
(“separate these pictures of Joe and Mary”).

For this project, we will use a small part of a huge database of faces of famous people (Labeled Faces
in the Wild [LFW] people dataset1). The images have already been cropped out of the original
image, and scaled and rotated so that the eyes and mouth are roughly in alignment; additionally,
we will use a version that is scaled down to a manageable size of 50 by 37 pixels (for a total of
1850 “raw” features). Our dataset has a total of 1867 images of 19 different people. You will
apply dimensionality reduction using principal component analysis (PCA) and explore clustering
methods such as k-means and k-medoids to the problem of facial recognition on this dataset.

Download the starter files from the course website. It contains the following source files:

• util.py – Utility methods for manipulating data, including through PCA.
• cluster.py – Code for the Point, Cluster, and ClusterSet classes, on which you will build

the clustering algorithms.
• faces.py – Main code for the project.

Please note that you do not necessarily have to follow the skeleton code perfectly. We encourage
you to include your own additional methods and functions. However, you are not allowed to use
any scikit-learn classes or functions other than those already imported in the skeleton code.

Dataset warning: Before you start this assignment, you should use util.get_lfw_data(...)

to get the LFW dataset with labels. Make sure that you have 19 classes. (You may have fewer
classes since there is some randomness involved in how scikit-learn loads the dataset.) If you
have fewer classes, you have two choices: (1) work with a partner whose dataset has 19 classes, or
(2) work on your own but with a few modifications to the instructions in this assignment.

1 PCA and Image Reconstruction [6 pts]

Before attempting automated facial recognition, you will investigate a general problem with images.
That is, images are typically represented as thousands (in this project) to millions (more generally)
of pixel values, and a high-dimensional vector of pixels must be reduced to a reasonably low-
dimensional vector of features.

(a) (1 pts) As always, the first thing to do with any new dataset is to look at it. Use get_lfw_data(...)
to get the LFW dataset with labels. Plot a couple of the input images using show_image(...).
Then compute the mean of all the images, and plot it. (Remember to include all requested
images in your writeup.) Comment briefly on this “average” face.

1http://vis-www.cs.umass.edu/lfw/

2

http://vis-www.cs.umass.edu/lfw/

(b) (1 pts) Perform PCA on the data using util.PCA(...). This function returns a matrix U

whose columns are the principal components, and a vector mu which is the mean of the data.
If you want to look at a principal component (referred to in this setting as an eigenface), run
show_image(vec_to_image(v)), where v is a column of the principal component matrix.
(This function will scale vector v appropriately for image display.) Show the top twelve
eigenfaces:

plot_gallery([vec_to_image(U[:,i]) for i in xrange(12)])

Comment briefly on your observations. Why do you think these are selected as the top
eigenfaces?

(c) (4 pts) Implement apply_PCA_from_Eig(...) and reconstruct_from_PCA(...) (available
in util.py) based on the provided specifications.

Then explore the effect of using few or many dimensions to represent images by:

• Finding the principal components of the data

• Selecting a number l of components to use

• Reconstructing the images using only the first l principal components

• Visually comparing the images to the originals

To perform PCA, use apply_PCA_from_Eig(...) to project the original data into the lower-
dimensional space, and then use reconstruct_from_PCA(...) to reconstruct high-dimensional
images out of lower dimensional ones. Then, using plotGallery(...), submit a gallery of the
first 12 images in the dataset, reconstructed with l components, for l = 1, 10, 50, 100, 500, 1288.
Comment briefly on the effectiveness of differing values of l with respect to facial recognition.

We will revisit PCA in the last section of this project.

2 K-Means and K-Medoids [14 pts]

Next, we will explore clustering algorithms in detail by applying them to a toy dataset. In particular,
we will investigate k-means and k-medoids (a slight variation on k-means).

(a) (2 pts) In k-means, we attempt to find k cluster centers µj ∈ Rd, j ∈ {1, . . . , k} and n

cluster assignments c(i) ∈ {1, . . . , k}, i ∈ {1, . . . , n}, such that the total distance between each
data point and the nearest cluster center is minimized. In other words, we attempt to find
µ1, . . . ,µk and c(1), . . . , c(n) that minimizes

J(c,µ) =

n∑
i=1

||x(i) − µc(i) ||
2.

To do so, we iterate between assigning x(i) to the nearest cluster center c(i) and updating
each cluster center µj to the average of all points assigned to the jth cluster.

Instead of holding the number of clusters k fixed, one can think of minimizing the objective
function over µ, c, and k. Show that this is a bad idea. Specifically, what is the minimum
possible value of J(c,µ, k)? What values of c, µ, and k result in this value?

3

(b) (3 pts) To implement our clustering algorithms, we will use Python classes to help us define
three abstract data types: Point, Cluster, and ClusterSet (available in cluster.py). Read
through the documentation for these classes. (You will be using these classes later, so make
sure you know what functionality each class provides!) Some of the class methods are already
implemented, and other methods are described in comments. Implement all of the methods
marked TODO in the Cluster and ClusterSet classes.

(c) (6 pts) Next, implement random_init(...) and kMeans(...) based on the provided spec-
ifications.

You may find it useful to test the performance of k-means on a toy dataset. We have provided
one such toy dataset that contains three clusters, each containing 20 points. (You can modify
the code generate_points_2d(...) to test different inputs while debugging your code, but
be sure to return to the initial implementation before comparing against the plots below.)
If you implemented random_init(...) and kMeans(...) correctly, you should generate the
following plots, where color represents the cluster assignments and circles indicate the cluster
“centers”:

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration1

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration2

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration3

Figure 1: k-means with random initialization

Note that you may have different results based on the randomly generated toy dataset and
different random initialization.

4

(d) (2 pts) Implement kMedoids(...) based on the provided specification.

Hint : Since k-means and k-medoids are so similar, you may find it useful to refactor your code
to use a helper function kAverages(points, k, average, init='random', plot=True),
where average is a method that determines how to calculate the average of points in a
cluster (so it can take on values ClusterSet.centroids or ClusterSet.medoids).2

If you implemented kMedoids(...) correctly, you should generate the following plots:

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration1

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration2

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration3

Figure 2: k-medoids with random initialization

(e) (1 pts) Finally, we will explore the effect of initialization. Implement cheat_init(...).

If you implemented cheat_init(...) correctly, you should generate the following plots:

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration1

Figure 3: k-means with cheat initialization

2In Python, if you have a function stored to the variable func, you can apply it to parameters arg by callling
func(arg). This works even if func is a class method and arg is an object that is an instance of the class.

5

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Iteration1

Figure 4: k-medoids with cheat initialization

3 Clustering Faces [10 pts]

Finally (!), we will apply clustering algorithms to the image data. To keep things simple, we will
only consider data from four individuals. Make a new image dataset by selecting 40 images each
from classes 4, 6, 13, and 163, then translate these images to (labeled) points:

X1, y1 = util.limit_pics(X, y, [4, 6, 13, 16], 40)

points = build_face_image_points(X1, y1)

(a) (2 pts) Apply k-means and k-medoids to this new dataset, initializing the centroids ran-
domly. Evaluate the performance of each clustering algorithm by computing the average
cluster purity with ClusterSet.score(...). As the performance of the algorithms can vary
widely depending upon the initialization, run both clustering methods 10 times and report
the average, minimum, and maximum performance.

average min max

k-means
k-medoids

How do the clustering methods compare in terms of clustering performance and runtime?

Now construct another dataset by selecting 40 images each from two individuals 4 and 13.

(b) (4 pts) Explore the effect of lower-dimensional representations on clustering performance.
To do this, compute the principal components for the entire image dataset, then project the
newly generated dataset into a lower dimension (varying the number of principal components),
and compute the scores of each clustering algorithm.

So that we are only changing one thing at a time, use init='cheat' to generate the same ini-
tial set of clusters for k-means and k-medoids. For each value of l, the number of principal com-
ponents, you will have to generate a new list of points using build_face_image_points(...).)

3If your dataset does not have 19 classes, then you can use the first four classes instead.

6

Let l = 1, 3, 5, . . . , 41. Then, on a single plot, plot the clustering score versus the number
of components for each clustering algorithm (be sure to label the algorithms). Discuss the
results in a few sentences, being sure to provide reasoning for your observations.

Some pairs of people are more similar to one another and some more different.

(c) (4 pts) Experiment with the data to find a pair that clustering can discriminate very well
and another pair that it finds very difficult. Describe your methodology (you may choose any
of the clustering algorithms you implemented). Report the two pairs in your writeup (display
the images), and comment briefly on the results.

4 Extra Credit [+3 pts]

Design your own experiment that can be addressed using this dataset and clustering (similar to
the discriminating faces analysis we asked of you). Points will be awarded based on the novelty of
your question, your experimental approach, and your writeup.

7

	PCA and Image Reconstruction [6 pts]
	K-Means and K-Medoids [14 pts]
	Clustering Faces [10 pts]
	Extra Credit [+3 pts]

