
Curricular and community resources:
Supporting Scripting for All∗

Lilly Lee, Hallie Seay, Zachary Dodds
Harvey Mudd College
Claremont, CA 91711

{lglee, hseay, dodds}@g.hmc.edu

Abstract
This work envisions resources that help all of an institution’s un-

dergraduates build a foundation of computational authorship. Here we
present materials evolved from many years of experience requiring Intro-
to-Computing (Comp1) of all first-semester students. We hope to prompt
and join other institutions looking for ways to engage as much of their
undergraduate cohort as possible in computing.

1 Context-and-Community Tools: Developing shared com-
putational models

Every direction we look, our era offers opportunities for computing to con-
tribute. Whether through intensive calculations or insight-producing sum-
maries, computing offers accessible, repeatable, executable interaction-models.
From their patterns and dynamics, deeper insights can emerge and fundamen-
tal relationships can be discovered or reinforced.

The creation of conceptual models is at the heart of computing. Exploring
such models is the realm of introductory computing; our institution requires a
“Comp1” course of all first-semester students. This universality has prompted
us to develop and customize curricular tools that emphasize students’ “shared
computing-experience” and promote student-support of each year’s new, in-
coming cohort. This work highlights new directions along this path.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1



Figure 1: CodingBat interface. It is a clean, simple website with a code editor
and test cases with which you can check your code.

2 Coding with Wally: A “multiple-path” CodingBat

For many years our students have used CodingBat, a venerable – and wonderful
– set of small-function exercises by Nick Parlante and co-authors at Stanford
University[3]. Students are prompted to compose a function matching desired
input-output behavior. Once run, students see the test cases they have passed
with others, perhaps, failed. Sometimes some of the test cases are hidden.

CodingBat’s approach is enormously valuable! It’s with good reason that
it has become so widespread: to solve a problem, one internalizes the specifi-
cation, perhaps tries a few examples, understands it, and expresses a solution.
Codingbat’s interface supports this workflow well.

3 The opportunity: Additional “approach headings” to
computational problem-solving

Each of that workflow’s components, however, offers opportunity for elabora-
tion. For example, the first step, “understanding the problem,” is no trifle! In
many cases, understanding the problem is the problem – what’s more, it is a
skill we can actively reinforce.

To that end, we have developed an institution-specific variation on Coding-
Bat named Coding with Wally (Wally is our informal mascot)[1]. Figure 2’s
example displays Coding with Wally’s interface; it is similar to CodingBat in
that students are given the prompt, a code editor, and test cases. However, it

2



Figure 2: Coding with Wally augments CodingBat’s approach, offering al-
ternative ways of exploring a problem, its specification, and its input/output
behavior. The interface supports the traditional approach of simply writing the
function body. The upper-right menu offers several other options: predicting
outputs, anticipating inputs, and finding bugs in provided, incorrect versions
of the function body itself.

Figure 3: The test input section. Users are given test inputs and are asked
to determine the corresponding output. The answer is checked, and the result
shared.

differs in also offering each facet separately.
To focus on the challenge of internalizing what the problem “wants you to

do,” Coding with Wally offers several alternative interfaces.
Figures 3 and 4 show Coding with Wally’s “test input” and “test output”

pages of the previously-shown dropdown. Because it is more focused than the
“wide-open” writing of a function body like in CodingBat, this mechanic is a
powerful one for developing a deeper understanding of the problem. Before
diving in, students have the opportunity to step back and carefully consider
what the transformation should do, both forward and “in reverse.”

This is especially useful for motivating edge cases and/or other details that
may escape attention the first time the problem is encountered. It also re-
inforces that problem understanding is worthwhile – and takes time. Too
often anxiety results from the inadvertently-absorbed belief that problem-
understanding needs to be immediate: it shouldn’t be!

A mechanic that further bolsters understanding is the “test bugs” section. A
user is provided a buggy or incomplete version of the code, as shown in Fig. 5.

3



Figure 4: The test output section. Users are given test outputs and are asked
to find a possible input (as there can be multiple). Again, the answer is checked
and result shared.

Figure 5: The test bugs interface. Users are provided a buggy version of the
code at right. The bottom left provides an interface for users to write inputs
that reveal the bugs.

By parsing and digesting that code, students are asked to consider how it does
– and doesn’t – meet the problem specification. This interaction requires deep
understanding with the problem specification and, more generally, problem-
specification space! In most cases, comprehending code that someone else has
written is more difficult than one’s own code. This is all the more true when
errors are lurking among its lines. (In this case, the buggy sum13 code does
not appropriately consider the numbers that come after 13!)

Philosophically, the contributions of Coding with Wally echo the insights of
Gamage’s “Bottom-up” approach[2], in which entire, working artefacts provide
a rich, authentic context. From that context, memorable and deeply engaging
interactions arise. By approaching a computational challenge in multiple ways,
each factored into a purpose-tuned interface, we conspire for each student to
develop a nuanced and useful “computational grounding” from which to wrestle
with future problems.

4 Slicer: Engaging a particular Python strength

At times, introductory students feel flooded with “sublanguages,” those spe-
cialized pieces of every language whose expression is worth developing, first

4



Figure 6: (left) Upon inputting a string or array into the first input box,
the user is presented with that same input right below in large letters. The
user can then “highlight” what they wish to keep by simply clicking on each
index. Hitting the second submit button generates a possible combination of
concatenated Python slicing to retrieve the indexes highlighted in blue. (right)
Here, the user inputs their own slicing syntax. The website then highlights
what part of the string or array that the user has selected with their code.

by practicing in isolation, then by integrating into a Coding-with-Wally-type
challenge. (From there, it’s on to problems “in the wild.”) With Slicer, we
scaffold this confidence-expanding process.

Python slicing and indexing can be difficult to grasp at first; it constitutes
its own mini-language, complete with syntactic and semantic idiosyncrasies
worthy of any full-fledged programming idiom! In general, slicing a sequence
item takes the format of item[start:end:stride], where start represents
the starting index, end represents the ending index, and stride representing
the number of indices traversed each step. For example, if item="abcdef",
then item[1:4:2] would evaluate to "bd". There are many edge cases.

This syntax takes time for newcomers to digest. To help, we introduce
Slicer, an interactive visual aid that singles out slicing syntax and invites stu-
dents to build their own conceptual model mapping from that syntax to state-
ment behavior[1]. Figures 6 and 7 show two “directions” for these interactions.

5 Hmmm with Wally: Making “the Machine” Accessible

High-level programming languages frame most of students’ “Comp1” interac-
tions. Base-two representation is also part of the experience. Our curriculum
further includes a unit on assembly language. We feel assembly valuable-as-
knowledge (all software “runs in assembly,” after all). It is also further op-

5



Figure 7: On the left is a description of each operation in the Hmmm assembly
language. On the right is a sample program that takes an input integer and
outputs its factorial. This also shows how students traditionally run Hmmm
programs through the terminal.

portunity to practice “computational patterns,”[4], i.e., conceptual models of
computing processes. There is a cohort-building facet, too, borrowing the spirit
of experiments such as [5].

A short, hands-on tour of assembly uncovers a layer of abstraction that
enriches the experience of high-level program development, and opens doors
to fuller models when the need arises. In a way, assembly is computing’s
“genetic translation and transcription.” Like genetics, it’s worth having as part
of a computational worldview – even if students don’t see their future selves
wrestling with machine architectures (or biological ones!)

6 Hmmm...

Thus, every student programs in the assembly language, Hmmm, in their re-
quired computing course. Hmmm, the Harvey Mudd miniature machine, is a
small, conceptually central subset of all in vivo assemblies. Hmmm digestibly
conveys instruction syntax and direct interaction with registers and memory.
The machine itself is a 16-register system with 256-memory locations, emulated
by a single Python file. Students run, debug, and reason about the Hmmm
code they write.

6



Figure 8: App interface: The page has a simple layout, displaying the editor
at left, registers at right, and input/output boxes in the center. The short
program shown in the editor was run with the “run all” button. This is similar
to how students would previously run their code, with the added benefit of
seeing the state of the registers and stack at the end of the execution.

7 Accessible Assembly: Hmmm with Wally

Though Hmmm makes the low-level mindset accessible, all assembly language
can be chin-scratching stuff! Beyond the command-line interface, we present
here an accessible web application with which students can visualize and tinker
with what their Hmmm code is actually doing – and how. This interface
reinforces the conceptual model we hope all students take away from their
Hmmm experience. Figures 8, 9, and 10 show this interface and summarize its
opportunities.

8 Perspective(s)

Sandboxes – where students can focus on one facet of a computational model
– offer benefits especially when computing is a universal, shared experience.
This work has illustrated the vision – and advantages – of embracing many
exploratory and explanatory paths of computing-as-literacy. When building
confidence and comfort with a new mindspace, multiple approaches – unpack-
ing problems from different perspectives – offer “onramps” into engagement
and understanding. For skills as broadly applicable as computing, this is all
the more important. As computing embraces more roles, such approaches are
vital: they open doors in all directions, both inward to further computational
work and onward across disciplinary specialties.

7



Figure 9: (left) “Step through” functionality allows students to run one in-
struction at a time, moving forward and back incrementally through their code,
seeing how registers and the stack changes with each line. Here, the last three
lines of code have not yet been run, as reflected in the stack and registers.
(right) The stack is positioned and changed as an extension of the editor to
emphasize how both instructions and the data-stack are stored in the same set
of memory locations.

Acknowledgments The authors gratefully acknowledge the funding sup-
port of NSF projects 1707538 and 1612451, along with resources made available
by Harvey Mudd College.

References

[1] All of the authors’ applications in this work are available at
https://myappkanalu.firebaseapp.com/.

[2] Lasanthi N. Gamage. “A bottom-up approach for computer programming
education”. In: Journal of Computing Sciences in Colleges 36 (April 2021),
pp. 66–75.

[3] Nick Parlante. “Nifty reflections”. In: SIGCSE Bulletin 39 (2007), pp. 25–
26. doi: 10.1145/1272848.1272876.

[4] Richard Rasala and Viera K. Proulx. “Pattern and toolkits in introductory
CS courses”. In: Proceedings of the second annual CCSC on Computing in
Small Colleges Northwestern conference (October 2000).

[5] Rita Sperry. “We’re all in this together: learning communities for first-year
computer science majors”. In: The Journal of Computing Sciences in Col-
leges and Proceedings of the 32nd Annual CCSC South Central Conference
(April 2021), pp. 11–19.

8


